Fluorescence spectra analysis of soybean protein in vitro under heat treatment
-
摘要: 分析了不同温度热处理及不同时间热处理的大豆分离蛋白体外模拟消化过程产物的荧光光谱。结果表明:不同时间热处理及不同温度的热处理均对大豆蛋白的消化有一定促进作用,大豆蛋白的最佳热处理条件为85℃、20 min,蛋白质的消化程度最大。大豆分离蛋白经不同温度热处理后,消化1 h,消化产物的最大吸光波长(λmax)即随着加热温度的上升而红移,在加热90℃时达到最大值后下降,而荧光强度呈现出先上升后下降的变化趋势。经过不同时间热处理后消化1 h,大豆分离蛋白消化产物的λmax先上升后下降。且荧光强度随着加热时间的延长呈现出不同的变化趋势,在020 min不断升高时,20 min时达到最大值,而继续加热至60 min,荧光强度逐渐下降。Abstract: The characters of fluorescence spectra of soy protein isolate(SPI) solution in vitro of different heat treatment temperature and different heat treatment time. The results showed that heat treatment had a certain effect on the digestion of soybean protein at different heat treatment temperature and different heat treatment time. The best heat treatment condition of soybean protein was 85 ℃,20 min,which was the best degree and effectiveness of the vitro digestion. The soy protein isolate was heat-treated at different temperatures,digested1 h. With the rise of heating temperature,digested products of λmax increasing redshift,then it started to decrease when the maximum value was reached at 90 ℃.And the fluorescence intensity increased with the heating time,and showed a trend of decline after the first rise. The in vitro simulated digestion of soybean protein isolate 1 h at different heating time,the isolated soy protein digested products of λmax experienced a process,which was first increased,then decreased. And the fluorescence intensity with the increase of heating time and showed different trends.Growing within 0~20 min,reaching maximum at 20 min,continuing to heat up to 60 min,the fluorescence intensity decreased.
-
[1] 程极济.光生物物理学[M].北京:高等教育出版社,1987:10-20. [2] 陈国珍.荧光分析法[M].北京:科学出版社,1990:36-40. [3] 尹燕霞,向本琼,佟丽.荧光光谱法在蛋白质研究中的应用[J].实验技术与管理,2010,27(2):33-36. [4] 钟葵,胡小松,吴继红,等.高压脉冲电场对脂肪氧化酶二级和三级构象的影响效果[J].光谱学与光谱分析,2009,29(3):765-768. [5] Petruccelli S,Anon M C.Thermal aggregation of soy protein isolates[J].Journal of Agricultural and Food Chemistry,1995,43(12):3035-3041.
[6] Mills E N,Marigheto N A,Wellner N,et al.Thermally induced structural changes in glycinin,the 11S globulin of soya bean(Glycine max)-an in situ spectroscopic study[J].Biochim Biophys Acta,2003,1648(1-2):105-114.
[7] Damodaran S,Kinsella J E.Effect of conglycinin on the thermal aggregation of glycinin[J].Journal of Agricultural and Food Chemistry,1982,30(5):812-817.
[8] Sorgentini D A,Wagner J R,Anon M C.Effects of thermal treatment of soy protein isolate on the characteristics and structure-function relationship of soluble and insoluble fractions[J].Journal of Agricultural and Food Chemistry,1995,43(9):2471-2479.
[9] 吴加根.谷物与大豆食品工艺学[M].北京:中国轻工业出版社,1996:420-422. [10] 李里特,王海.功能性大豆食品[M].北京:中国轻工业出版社,2002:36-38. [11] Lee J-Y,Lee HD,Lee C-H.Characterization of hydrolysates produced by mild-acid treatment and enzymatic hydrolysis of defatted soybean flour[J].Food research international,2001,34(2):217-222.
[12] 崔继科,刘景顺.大豆分离蛋白酶解的研究(一)[J].郑州粮食学院学报,1998,19(3):12-22. [13] Petruccelli S,A觡ón M.Relationship between the method of obtention and the structural and functional properties of soy proteins isolates.1.Structural and hydration properties[J].Journal of Agricultural and Food Chemistry,1994,42(10):2161-2169. [14] Jim Nez-Escrig A,Alaiz M,Vioque J,et al.Health-promoting activities of ultra-filtered okara protein hydrolysates released by in vitro gastrointestinal digestion:identification of active peptide from soybean lipoxygenase[J].European Food Research and Technology,2010,230:655-663.
[15] Adler-Nissen J.Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid[J].Journal of Agricultural and Food Chemistry,1979,27(6):1256-1262.
[16] 源博恩.亚基解离与重聚集对大豆蛋白结构和功能特性的影响[D].广州:华南理工大学,2012. [17] Kalapathy U,Hettiarachchy N S,Rhee K C.Effect of drying methods on molecular properties and functionalities of disulfide bond-cleaved soy proteins[J].J Am Oil Chem Soc,1997,74(3):195-199.
[18] 刘清亮,吴双顶,余华明,等.皖南尖吻蝮蛇毒糖甙水解酶(NADase)的荧光光谱研究[J].无机化学学报,1998,14(1):53-57. [19] Vivian J T,Callis P R.Mechanisms of tryptophan fluorescence shifts in proteins[J].Biophysical journal,2001,80(5):2093-2109.
[20] Pallarès I,Vendrell J,Avilés FX,et al.Amyloid fibril formation by a partially structured intermediate state ofα-chymotrypsin[J].Journal of molecular biology,2004,342(1):321-31.
[21] Tezuka M,Yagasaki K,Ono T.Changes in characters of soybean glycinin groups I,IIa,and IIb caused by heating[J].Journal of agricultural and food chemistry,2004,52(6):1693-1699.
[22] Ferrer EG,Gómez AV,Anón MC,et al.Structural changes in gluten protein structure after addition of emulsifier.A Raman spectroscopy study[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011,79(1):278-81.
[23] Yang J H,Yang E S,Park J W.Inactivation of NADP+-dependent isocitrate dehydrogenase by lipid peroxidation products[J].Free Radical Research,2004,38(3):241-249.
[24] Lord R C,Yu N T.Laser-excited Raman spectroscopy of biomolecules I native lysozyme and its constituent amino acids[J].Int J Biochem Cell B,1998,50(2):509-524.
[25] Kalapathy U,Hettiarachchy N,Rhee K.Effect of drying methods on molecular properties and functionalities of disulfide bond-cleaved soy proteins[J].Journal of the American Oil Chemists’Society,1997,74(3):195-199.
计量
- 文章访问数: 236
- HTML全文浏览量: 14
- PDF下载量: 506