Model optimization of near- infrared spectroscopy and back propagation artificial neural network for identifying the geographical origin of Tremella fuciformis
-
摘要: 研究通过近红外光谱技术(NIRS)结合人工神经网络技术(ANN)识别银耳的不同产地。实验以四川省与福建省两个产地共120组银耳样品为研究对象,对其进行近红外光谱测定,计算光谱吸收值的平均偏差与一阶导数进而选取有效数据,结合主成分分析方法将原始数据降维并采用反向人工神经网络技术构建近红外分析模型。结果显示,通过对有效数据主成分分析,前3个主成分的累计方差贡献率达到100%,判断准确率为88.3%;进一步采用人工神经网络优化模型,在输出层为2隐藏层为11时,判断准确率达100%;此时校正集与预测集的均方根误差分别为3.05×10-2与2.90×10-2,模型具有良好的泛化能力。因此,结合人工神经网络的近红外光谱检测技术,优化检测模型,能够准确、快速地识别银耳产地,为食品原材料的质量控制及地理标志的建立提供科学依据。Abstract: Near- infrared spectroscopy in combination with artificial neural network was used to identify the geographical origin of tremella fuciformis. A total of 120 samples from Sichuan province and Fujian province were studied.After being pre- treated with average deviation and first derivative,the dimension of near- infrared absorption spectroscopy data were reduced and applied to develop classification models by principal components analysis and back propagation artificial neural network.The results showed that the cumulative contribution of first three principal components was 100%,but identification accuracy was 88.3% by principal components analysis.Thus the artificial neural network was further used to optimize the structure of classification model. Under 2 output layers and 11 hidden layers,the identification accuracy reached 100%.The study demonstrated that near- infrared absorption spectroscopy based on artificial neural network can be used as an accurate and rapid technique for identification of geographical origin of tremella fuciformis. Models builded by this study can help building geographical indications and monitoring quality for raw materials of food.
-
[1] Du X,Zhang J,Lv Z,et al.Chemical modification of an acidic polysaccharide(TAPA1)from Tremella aurantialba and potential biological activities[J].Food Chemistry,2014,143(1):336-340.
[2] Zhang Z,Wang X,Zhao M,et al.Free-radical degradation by Fe2+/Vc/H2O2and antioxidant activity of polysaccharide from Tremella fuciformis[J].Carbohydrate Polymers,2014,112(11):578-582.
[3] Shi Z,Liu Y,Xu Y,et al.Tremella Polysaccharides attenuated sepsis through inhibiting abnormal CD4+CD25highregulatory T cells in mice[J].Cell Immunol,2014,288(2):60-65.
[4] 颜军,郭晓强,邬晓勇,等.银耳多糖的提取及其清除自由基作用[J].成都大学学报:自然科学版,2006,25(1):35-38. [5] 黄建立,黄艳,郑宝东,等.不同干燥方式对银耳品质的影响[J].中国食品学报,2010,10(2):167-173. [6] Xiccato G,Trocino A,Tulli F,et al.Prediction of chemical composition and origin identification of european sea bass(Dicentrarchus labrax L.)by near infrared reflectance spectroscopy(NIRS)[J].Food Chemistry,2004,86(2):275-281.
[7] 管骁,古方青,杨永健.近红外光谱技术在食品产地溯源中的应用进展[J].生物加工过程,2014,12(2):77-82. [8] Marini F,Bucci R,Magri AL,et al.Artificial neural networks in chemometrics:History,examples and perspectives[J].Microchemical Journal,2008,88(2):178-185.
[9] Marini F.Artificial neural networks in food stuff analyses:Trends and perspectives a review[J].Analytica Chimica Acta,2009,635(2):121-131.
[10] 王晓谦,钟赛义,秦小明,等.基于神经网络平台的牡蛎肉超高压杀菌工艺条件优化[J].食品工业科技,2014,36(6):257-261. [11] Aursand M,Standal IB,Axelson DE.High-resolution 13C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules[J].Journal of Agricultural and Food Chemistry,2007,55(1):38-47.
[12] 庞涛涛,姚建斌,杜黎明.人工神经网络分类鉴别苦丁茶红外光谱[J].光谱学与光谱分析,2007,27(7):1336-1339. [13] 王凤花,朱海龙,杨菊,等.基于近红外光谱荞麦淀粉、蛋白质和总黄酮含量测定方法研究[J].食品工业科技,2014,35(5):281-284. [14] 洪雪珍,韦真博,海铮,等.基于电子鼻和神经网络的牛肉新鲜度的检测[J].现代食品科技,2014,30(4):279-285. [15] 包刚,覃志豪,周义,等.基于高光谱数据和RBF神经网络方法的草地叶面积指数反演[J].国土资源遥感,2012,93(2):7-11. [16] 欧文娟,孟耀勇,张小燕,等.紫外可见吸收光谱结合主成分-反向传播人工神经网络鉴别真假蜂蜜[J].分析化学,2011,39(7):1104-1108.
计量
- 文章访问数: 174
- HTML全文浏览量: 20
- PDF下载量: 267