Cloning and sequence analysis of the FZF1 gene concerning sulfur tolerance from Saccharomyces bayanus
-
摘要: FZF1基因在酿酒酵母中对亚硫酸盐转运蛋白编码基因SSU1具有正向调节作用,但在贝酵母中尚无相关报道,本研究拟通过对该基因进行克隆和生物信息学分析为后续研究做出参考。首先对贝酵母FZF1基因进行克隆,并利用在线分析工具Prot Param、Prot Scale、TMHMM、Predict Protein、Swiss-Model等软件对其编码蛋白质的基本理化性质进行分析,同时预测了该基因所编码蛋白质的二级结构和三级结构。结果表明:该核苷酸序列含有一个长900 bp的开放阅读框,可编码299个氨基酸;编码的蛋白质为在细胞核中行使调控功能的亲水蛋白,含有18个丝氨酸(S)激酶潜在磷酸化位点、一个Coil区和4个锌指结构域,与酿酒酵母FZF1基因所编码的蛋白质结构和性质极为相似。可初步认为贝酵母FZF1基因与细胞的耐硫性相关;而贝酵母FZF1基因所编码的蛋白质中仅有4个锌指,则可能是贝酵母硫耐受能力比酿酒酵母弱的重要原因。Abstract: The FZF1 gene of Saccharomyces cerevisiae was found to be a positive regulator of SSU1 transcription,but there was no report about the FZF1 gene of Saccharomyces bayanus.In this study,the genes were cloned and the content of bioinformatics was analyzed by online tools for setting the foundation of the further research.Here the FZF1 gene of S.bayanus was cloned and the physical and chemical properties of FZF1 protein were analyzed by online analytical tools,such as Prot Param,Prot Scale,TMHMM,Predict Protein and Swiss- Model.At the same time,the protein secondary structure and tertiary structures were predicted. The results indicated that the FZF1 gene contained an opening reading frame( ORF) of 900 bp encoding a 299 predicted amino acids. The protein was a hydrophilic protein exercising their control functions in the nucleus. It contained 18 serine kinase potential phosphorylation sites,a coil domain and 4 zinc finger domains.The protein encoded by FZF1 gene of S.cerevisiae was very similar with the predicted protein.So the FZF1 gene of S.bayanus was inferred to be associated with the sulfur resistance.And the protein encoded by the FZF1 gene of S.bayanus only contains 4 zinc finger domains.It was one of the most important reasons that the sulfur tolerance of most S.bayanus was weaker than most S.cerevisiae.
-
Keywords:
- Saccharomyces bayanus /
- FZF1 /
- sequencing analysis /
- sulfur tolerance gene
-
[1] 陈叶福,沈世超,王艳,等.SSU1多拷贝表达对酿酒酵母二氧化硫生成量的影响[J].微生物学报,2008,48(12):1609-1615. [2] Taylor S L,Higley N A,Bush R.Sulfites in food:uses,analytical methods,residues,fate,exposure assessment,metabolism,toxicity,and hypersensitivity[J].Adv.Food Res,1986,30:1-7.
[3] Avram D,Leid M,Bakalinsky A T.Fzflp of Saccharomyces cerevisiae is a positive regulator of SSU1 transcription and its first zinc finger region is required for DNA binding[J].Yeast,1999,15:473-480.
[4] Divol B,du Toit M,Duckitt E.Surviving in presence of sulphur dioxide:strategies developed by wine yeasts[J].Appl Microbiol Biotechnol,2012,95(3):601-613.
[5] Hinze H,Holzer H.Analysis of the energy metabolism after incubation of Saccharomyces cerevisiae with sulfite or nitrite[J].Arch Microbiol,1986,145(1):27-31.
[6] Hinze H,Holzer H.Effect of sulfite or nitrite on the ATP content and the carbohydrate metabolism in yeast[J].Z Lebensm Unters Forsch,1985,181(2):87-91.
[7] Schimz KL,Holzer H.Rapid decrease of ATP content in intact cells of Saccharomyces cerevisiae after incubation with low concentrations of sulfite[J].Arch Microbiol,1979,121(3):225-229.
[8] Rankine B C,Pocock K F.Influence of yeast strain on binding of sulphur dioxide in wines,and on its formation during fermentation[J].J Sci Food Agric,1962,20(2):104-109.
[9] Park H,Bakalinsky.SSU1 mediates sulphite efflus in Sacharomyces cerevisiae[J].Yeast,2000(16):881-888.
[10] Tiziana N,Viviana C,Alessio G,et al.A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast[J].Microbiology,2010,156(6):1686-1696.
[11] Avram D,Bakalinsky A T.SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae[J].Bacteriol,1997,179(18):5971-5974.
[12] Donalies U E B,Stahl U.Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1[J].Yeast,2002,19:475-484.
[13] Breitwieser W,Price C,Schuster T.Identification of a gene encoding a novel zinc finger protein in Saccharomyces cereviaiae[J].Yeast,1993(9):551-556.
[14] 王庆国,刘天明.酵母菌分类学方法研究进展[J].微生物学杂志,2007,27(3):96-101. [15] Ciani M E,Kerala(India),Sipiczki M.Taxonomic and physiological diversity of saccharomyces bayanus,in biodiversity and biotechnology of wine yeasts[M].Research Signpost,2002,53-69.
[16] Naumov G I,Naumova E S,Martynenko N N and MasneufPomaréde I.Taxonomy,ecology,and genetics of the yeast saccharomyces bayanus:a new object for science and practice[J].Mikrobiologiya,2011,80(6):723-730.
[17] 张太奎,朱方明,刘小珍,等.贝酵母SSU1基因的克隆与分析[J].中国食品学报,2014,14(9):195-199. [18] 阎隆飞,孙之荣.蛋白质分子结构[M].北京:清华大学出版社,1999:17-18. [19] 刘雅婷,李正跃,朱有勇,等.植物病原菌Pseudomonas syringae pv.tomato基因组中的信号肽分析[J].遗传,2005,27(6):959-964. [20] 魏香,曾宪纲,周海梦.蛋白质结构中卷曲螺旋的研究进展[J].中国生物化学与分子生物学报,2004,20(5):565-571. [21] Tomoko F.Functional analysis of SSU1 genes in lager brewing yeast[J].Bioscience&Industry,2003,61(12):809-810.
[22] Iijima K,Ogata T.Construction and evaluation of selfcloning bottom-fermenting yeast with high SSU1 expression[J].Journal of Appl Microbiology,2010,109(6):1906-1913.
计量
- 文章访问数: 145
- HTML全文浏览量: 28
- PDF下载量: 99