Bioconcentration characteristics of Cadmium( Ⅱ) by Boletus edulis
-
摘要: 本文研究了美味牛肝菌液体发酵对不同浓度镉(Ⅱ)(Cd2+,0、16、32、48、64、80 mg/L)的生物富集特性。结果表明,Cd2+处理显著抑制了美味牛肝菌菌丝体的生长(p<0.05),生长抑制率为50%的Cd2+浓度为56 mg/L。菌丝体对Cd2+的生物富集量可高达3335.7 mg/kg DW,富集系数为52.1(p<0.05)。菌丝体中可溶性总糖和多糖含量随Cd2+浓度的升高呈现先上升后下降的趋势,Cd2+处理菌丝体中的多糖含量均高于无Cd2+组(p<0.05);菌丝体中可溶性蛋白含量随Cd2+浓度的升高先降低后上升,80 mg/L Cd2+处理组显著高于无Cd2+组(p<0.05)。Cd2+处理对菌体过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性呈现显著的"低促高抑"的影响趋势(p<0.05),而过氧化物酶(POD)活性被显著抑制(p<0.05)。表明美味牛肝菌对Cd2+具有很强的生物富集能力,可能是菌体的特定成分如多糖、蛋白等协同抗氧化酶系增强了菌体对Cd2+的耐受性和富集性能。Abstract: The bioconcentration characteristics of cadmium( Ⅱ) with different concentrations( Cd2+,0,16,32,48,64 and 80 mg / L) by Boletus edulis under liquid fermentation were investigated.The results showed that the treatment with increasing Cd2+concentrations significantly inhibited mycelia growth( p < 0.05),and 50% inhibitory concentration was 56 mg / L.Mycelia showed significant accumulation capacity for Cd2+,with the highest content of3335.7 mg Cd per kg mycelia( DW),and the bioconcentration factor was 52.1( p < 0.05). The contents of total soluble sugars and polysaccharides in mycelia were increased firstly and then decreased with increasing Cd2+concentrations.The content of polysaccharides in mycelia treated with Cd2+significantly higher than that of control( p < 0.05). Soluble protein contents were decreased firstly and then increased with increasing Cd2+concentrations,with the peak at 80 mg / L Cd2+( p < 0.05). The activities of CAT and SOD were significantly increased by lower Cd2+concentrations but inhibited by high Cd2+concentrations( p < 0.05).The activities of POD were significantly inhibited by Cd2+treatment( p < 0.05).
-
Keywords:
- Boletus edulis /
- cadmium /
- bioconcentration /
- food safety
-
[1] 冮洁,李学伟,金怀刚.美味牛肝菌菌丝体与子实体蛋白质营养价值的评价[J].食品科学,2013,34(3):253-256. [2] 唐薇,鲁新成.美味牛肝菌多糖的生物活性及其抗S-180肿瘤的效应[J].西南师范大学学报(自然科学版),1999,24(4):478-481. [3] KalacˇP.Trace element contents in European species of wild growing edible mushrooms:A review for the period 2000-2009[J].Food Chemistry,2010,122:2-15.
[4] Collin-Hansen C,Yttri K E,Andersen R A,et al.Mushrooms from two metal-contaminated areas in Norway:Occurrence of metals and metallothionein-like proteins[J].Geochemistry,Exploration,Environment,Analysis,2002,2:121-130.
[5] Vido K,Spector D,Lagniel G,et al.A proteome analysis of the cadmium response in Saccharomyces cerevisiae[J].Journal of Biological Chemistry,2001,276:8469-8474.
[6] 谢笔钧,何慧.食品分析[M].北京:科学出版社,2012:157-158. [7] 廖继佩,林先贵,曹志洪.内外生菌根真菌对重金属的耐受性及机理[J].土壤,2003,35(5):370-377. [8] Lima M A B,Franco L O,Souza P M,et al.Cadmium tolerance and removal from Cunninghamella elegans related to the polyphosphate metabolism[J].International Journal of Molecular Sciences,2013,14:7180-7192.
[9] 莫瑜,潘蓉,黄海伟,等.毛木耳和白木耳子实体对Cd(Ⅱ)、Cu(Ⅱ)、Pb(Ⅱ)和Zn(Ⅱ)的吸附特性研究[J].环境科学,2010,31(7):1566-1574. [10] 程显好,盖宇鹏,孙慧涌,等.蛹虫草对锌的耐性与富集特性[J].生态学报,2010,30(6):1449-1455. [11] 王松华,张华,崔元戎,等.镉对灵芝菌丝抗氧化系统的影响[J].应用生态学报,2008,19(6):1355-1361. [12] 王松华,张华,傅曼琴,等.柱状田头菇菌丝对镉胁迫的抗氧化响应[J].应用生态学报,2007,18(8):1813-1818.
计量
- 文章访问数: 142
- HTML全文浏览量: 17
- PDF下载量: 140