• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于可见/近红外光谱无损检测苹果可溶性固形物的光照优化

冯尚坤, 徐海菊

冯尚坤, 徐海菊. 基于可见/近红外光谱无损检测苹果可溶性固形物的光照优化[J]. 食品工业科技, 2014, (16): 64-66. DOI: 10.13386/j.issn1002-0306.2014.16.005
引用本文: 冯尚坤, 徐海菊. 基于可见/近红外光谱无损检测苹果可溶性固形物的光照优化[J]. 食品工业科技, 2014, (16): 64-66. DOI: 10.13386/j.issn1002-0306.2014.16.005
FENG Shang-kun, XU Hai-ju. Optimization of light distribution in non-destructive analysis of soluble solids content of apple base on visual/near-infrared spectroscopy[J]. Science and Technology of Food Industry, 2014, (16): 64-66. DOI: 10.13386/j.issn1002-0306.2014.16.005
Citation: FENG Shang-kun, XU Hai-ju. Optimization of light distribution in non-destructive analysis of soluble solids content of apple base on visual/near-infrared spectroscopy[J]. Science and Technology of Food Industry, 2014, (16): 64-66. DOI: 10.13386/j.issn1002-0306.2014.16.005

基于可见/近红外光谱无损检测苹果可溶性固形物的光照优化

详细信息
    作者简介:

    冯尚坤 (1975-) , 男, 硕士研究生, 副教授, 主要从事食品科学与加工方面的研究。;

  • 中图分类号: O657.33;TS255.7

Optimization of light distribution in non-destructive analysis of soluble solids content of apple base on visual/near-infrared spectroscopy

  • 摘要: 为优化光照在提高可见/近红外光谱无损检测苹果可溶性固形物含量(SSC)精度中的应用,实验比较了四种光照方式对USB2000+微型光谱仪采集苹果随机摆放位置时的透射光谱信号。在剔除光谱异常样本并经光谱预处理后,与常规方法检测的SSC建立偏最小二乘(PLS)回归模型。通过比较模型的预测均方根误差(RMSEP)与相关系数(rp),结果发现低角度、多光源组合的光照方式最好,模型预测结果为rp=0.804、RMSEP=0.635。该光照方式可为今后便携装置、在线检测的光源设计提供参考。 
    Abstract: To optimize the distribution of light source in the aspect of non-invasive analysis of soluble solids content (SSC) by visual/near-infrared (Vis/NIR) transmittance, four arrangements of light source distribution were designed to diminish the influence of the random acquisition-spot on ‘Red Fuji' apple by USB2000+portable fiber spectroscopy. After getting rid of the outliers and several pre-treatments on the transmitted spectra, partial least square (PLS) models were built between the spectra and the SSC, which was determined by regular method. Comparison of models ' root meant standard error prediction (RMSEP) and correlation coefficient (rp) , it was found that the type of that low angle of light illumination combined with multi-light sources was the best one to show the internal qualities of the fruit, with the corresponding prediction model for SSC as rp=0.804, as well as RMSEP=0.635. This might be a good reference to light-source distribution for online or portable device non-destructive determination used for industrial applications.
  • [1]

    Nicolai B M, Beullens K, Bobelyn E, et al.Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy:A review[J].Postharvest Biology and Technology, 2007, 46 (2) :99-118.

    [2] 孙通, 徐惠荣, 应义斌.近红外光谱分析技术在农产品/食品品质在线无损检测中的应用研究进展[J].光谱学与光谱分析, 2008, 28 (2) :285-290.
计量
  • 文章访问数:  138
  • HTML全文浏览量:  16
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-30

目录

    /

    返回文章
    返回