• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

燕麦β-葡聚糖调节肠道菌群与降脂减肥作用的研究进展

申瑞玲, 朱莹莹, 李林, 董吉林

申瑞玲, 朱莹莹, 李林, 董吉林. 燕麦β-葡聚糖调节肠道菌群与降脂减肥作用的研究进展[J]. 食品工业科技, 2014, (08): 364-366. DOI: 10.13386/j.issn1002-0306.2014.08.075
引用本文: 申瑞玲, 朱莹莹, 李林, 董吉林. 燕麦β-葡聚糖调节肠道菌群与降脂减肥作用的研究进展[J]. 食品工业科技, 2014, (08): 364-366. DOI: 10.13386/j.issn1002-0306.2014.08.075
SHEN Rui-ling, ZHU Ying-ying, LI Lin, DONG Ji-lin. Research progress in the intestinal flora and anti-obesity effect of oat β-glucan[J]. Science and Technology of Food Industry, 2014, (08): 364-366. DOI: 10.13386/j.issn1002-0306.2014.08.075
Citation: SHEN Rui-ling, ZHU Ying-ying, LI Lin, DONG Ji-lin. Research progress in the intestinal flora and anti-obesity effect of oat β-glucan[J]. Science and Technology of Food Industry, 2014, (08): 364-366. DOI: 10.13386/j.issn1002-0306.2014.08.075

燕麦β-葡聚糖调节肠道菌群与降脂减肥作用的研究进展

基金项目: 

国家自然科学基金(31271854);

详细信息
    作者简介:

    申瑞玲 (1967-) , 女, 博士, 教授, 主要从事食品营养方面的研究。;

  • 中图分类号: R285

Research progress in the intestinal flora and anti-obesity effect of oat β-glucan

  • 摘要: 近年来,超重和肥胖已成为许多国家突出的健康问题,其导致的一系列代谢类疾病死亡率远高于其他疾病。越来越多的证据表明,肥胖的发生与肠道菌群的组成密切相关。燕麦β-葡聚糖不仅具有显著的降血脂作用和减肥功效,还可以作为益生元调节机体肠道菌群结构。本文从肠道菌群与肥胖的相关研究、燕麦β-葡聚糖降脂减肥和益生元作用等方面综述了燕麦β-葡聚糖调节肠道菌群及其减肥降脂作用之间相关性的研究现状。 
    Abstract: In recent years, the prevalence of overweight and obesity has increased drastically, and the mortality rate of related chronic metabolic disorders is much higher than other diseases. Many evidences suggest that the microbial community in the human intestine may play an important role in the pathogenesis of obesity. Oatβ-glucan has been proved to help lower cholesterol and reduce body weight. Besides, it can also change the composition and activity of the gut microbiota. The correlation between regulation of the intestinal flora and anti-obesity effect of oat β-glucan from the correlation between the gut microbiota and obesity, the anti-obesity effect as well as the prebiotic effects of oat β-glucan were discussed in this review.
  • [1]

    Ogden C L, Yanovski S Z, Carroll M D, et al.The epidemiology of obesity[J].Gastroenterology, 2007, 132:2087-2102.

    [2]

    [3] 李文全.燕麦β-葡聚糖对高脂血症大鼠脂代谢的影响和机理探讨[D].太谷:山西农业大学, 2007.
    [4] 申瑞玲.燕麦β-葡聚糖的提取、结构及功能特性研究[D].无锡:江南大学, 2005.
    [5]

    Shen R L, Dang X Y, Dong J L, et al.Effects of Oatβ-glucan and Barleyβ-glucan on Fecal Characteristics, Intestinal Microflora and Intestinal Bacterial Metabolites in Rats[J].Journal of Agricultural and Food Chemistry, 2012, 60:11301-11308.

    [6]

    Zhao L P, Shen J.Whole-body systems approaches for gut microbiota-targeted, preventive healthcare[J].Journal of Biotechnology, 2010, 149:183-190.

    [7]

    Backhed F, Hao D, Ting W, et al.The gut microbiota as an environmental factor that regulates fat storage[J].Proc Natl Acad Sci USA, 2004, 101:15718-15723.

    [8]

    Ley R E, Peter J, Turnbaughp J, et al.Human gut microbes associated with obesity[J].Nature, 2006, 444:1022-1023.

    [9]

    Kallionmeki M, Carmen C M, Salminen S, et al.Early differences in fecal microbiota composition in children may predict overweight[J].Am J Clin Nutr, 2008, 87:534-538.

    [10] 张翼.膳食诱导肥胖大鼠的肠道菌群结构研究[D].上海:上海交通大学, 2009.
    [11]

    Andreas S, David T, Klaus S, et al.Microbiota and SCFA in lean and overweight healthy subjects[J].Obesity, 2010, 18:190-195.

    [12]

    Backed F, Manchester J K, Semenkovich C F, et al.Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J].Proc Natl Acad Sci USA, 2007, 104:979-984.

    [13]

    [14]

    Cani P D, Bibiloni R, Knauf C, et al.Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J].Diabetes, 2008, 57:1470-1481.

    [15]

    Xu R.Oat fibre:overview on their main biological properties[J].Eur Food Res Technol, 2012, 234:563-569.

    [16]

    Shimizu C, Kihara M, Aoe S, et al.Effect of highβ-glucan barley on serum cholesterol concentrations and visceral fat area in Japanese men-a randomized, double-blinded, placebocontrolled trial[J].Plant Foods Hum Nutr, 2008, 63:21-25.

    [17]

    Othman R A, Moghadasian M H, Jones P J H.Cholesterollowering effects of oatβ-glucan[J].Nutrition Reviews, 2011, 69:299-309.

    [18]

    Chen J, He J, Wildman R P, et al.A randomized controlled trial of dietary fiber intake on serum lipids[J].Eur J Clin Nut, 2006, 60:62-68.

    [19] Bi觟rklund M, Holm J, 魻nning G.Serum lipids and postprandial glucose and insulin levels in hyperlipidemic subjects after consumption of an oatβ-glucan-containing ready meal[J].Annals of Nutrition and Metabolism, 2008, 52:83-90.
    [20]

    Granfeldt Y, Nyberg L, Bjorck I.Muesli with 4g oatβ-366glucan lowers glucose and insulin responses after a bread meal in healthy subjects[J].Eur J Clin Nutr, 2008, 62:600-607.

    [21]

    Bae I Y, Kim S M, Lee S, et al.Effect of enzymatic hydrolysis on cholesterol-lowering activity of oat beta-glucan[J].N Biotechnol, 2010, 27:85-88.

    [22] 王英.不同燕麦产品对小鼠胃肠道代谢的影响[D].郑州:郑州轻工业学院, 2011.
    [23]

    Immerstrand T, Andersson K E, Wange C, et al.Effect of oat bran, processed to different molecular weight of beta-glucan, on plasma lipids and caecal formation of SCFA in mice[J].Br J Nutr, 2010, 104:364-373.

    [24]

    Jurgen S, Michael D V.Probiotics, Prebiotics, and synbioticsapproaching a definition[J].Am J Nutr, 2001, 73:361-364.

    [25] 吉布森G R, 拉斯塔尔R A.益生元开发与应用[M].胡学智译.北京:化学工业出版社, 2007, 10.
    [26]

    Riikka L, Seppo S, Ypshimi B, et al.Performance of bifidobacteria in oat-based media[J].International Journal of Food Microbiology, 2003, 83:105-109.

    [27]

    Gopal K, Jose A V, Severino S P.In Vitro Fermentation of Oat Bran Obtained by Debranning with a Mixed Culture of Human Fecal Bacteria[J].Curr Microbiol, 2009, 58:338-342.

    [28] Metzler-Zebeli B U, G覿nzle M G, Mosenthin R, et al.Oatβ-glucan and dietary calcium and phosphorus differentially modify intestinal expression of proinflammatory cytokines and monocarboxylate transporter 1 and cecal morphology in weaned pigs[J].The Journal of Nutrition, 2012, 14:668-674.
    [29]

    Yang J, Martínez I, Walter J, et al.In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production[J].Anaerobe, 2013, 23:74-81

    [30] 赵佳锐, 杨虹.益生菌降解胆固醇的作用及机理研究进展[J].微生物学报, 2005, 45:315-319.
    [31]

    Wolever T M S, Garleb K A, Ataya D G, et al.Interaction between colonic acetate and propionate in humans[J].American Journal of Clinical Nutrition, 1991, 53:681-687.

    [32]

    Candela M, Maccaferri S, Turroni S, et al.Functional intestinal microbiome, new frontiers in prebiotic design[J].International Journal of Food Microbiology, 2010, 140:93-101.

    [33]

    Murphy P, Dal Bello F, O’Doherty J, et al.Analysis of bacterial community shifts in the gastrointestinal tract of pigs fed diets supplemented withβ-glucan from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae[J].Animal, 2013, 7:1-9.

    [34]

    Guo C F, Li J Y.Hypocholesterolaemic action of Lactobacillus casei F0822 in rats fed a cholesterol-enriched diet[J].International Dairy Journal, 2013, 32:144-149.

计量
  • 文章访问数:  199
  • HTML全文浏览量:  21
  • PDF下载量:  1654
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-15

目录

    /

    返回文章
    返回