• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

乳糖酸产生菌的发酵培养基优化

李超, 吴雪晴, 郑艳

李超, 吴雪晴, 郑艳. 乳糖酸产生菌的发酵培养基优化[J]. 食品工业科技, 2014, (03): 187-191. DOI: 10.13386/j.issn1002-0306.2014.03.028
引用本文: 李超, 吴雪晴, 郑艳. 乳糖酸产生菌的发酵培养基优化[J]. 食品工业科技, 2014, (03): 187-191. DOI: 10.13386/j.issn1002-0306.2014.03.028
LI Chao, WU Xue-qing, ZHENG Yan. Optimization research of fermentation mediums for Lactobionic acid producing strain[J]. Science and Technology of Food Industry, 2014, (03): 187-191. DOI: 10.13386/j.issn1002-0306.2014.03.028
Citation: LI Chao, WU Xue-qing, ZHENG Yan. Optimization research of fermentation mediums for Lactobionic acid producing strain[J]. Science and Technology of Food Industry, 2014, (03): 187-191. DOI: 10.13386/j.issn1002-0306.2014.03.028

乳糖酸产生菌的发酵培养基优化

详细信息
    作者简介:

    李超 (1987-) , 女, 硕士研究生在读, 主要从事食品生物技术方向的研究。;

  • 中图分类号: TQ920.6

Optimization research of fermentation mediums for Lactobionic acid producing strain

  • 摘要: 以乳糖酸生产菌Rsoultella terrigena Y20为实验菌株,在单因素实验的基础上进行Plackett-Burman实验和BoxBehnken实验设计,采用响应面法建立土生拉乌尔菌Rsoultella terrigena Y20的发酵培养基优化模型。得到的最优产乳糖酸培养基为:乳糖110.28g/L,蛋白胨19.00g/L,硝酸铵3.00g/L,MgSO40.625g/L,K2HPO41.25g/L,KH2PO41.0g/L,NaCl 0.625g/L,pH7.5。经实验验证,在此条件下,乳糖酸的产量可达102.614g/L,转化率为93.05%,比优化前的93.84g/L提高了9.35%。 
    Abstract: Using Lactobionic Acid producing strain as test strain, on the basis of single factor experiment to conduct Plackett-Burman and Box Behnken experiment design, response surface method was adopted to establish the Rsoultella terrigena Y 20 fermentation medium optimization model. Optimal fermentation conditions for the highest Lactobionic Acid content in fermentation medium were set at lactose 110.28g /L, peptone 19.00g /L, NH 4 NO 3 3.00g /L, MgSO 4 0.625g /L, K 2 HPO 4 1.25g /L, KH 2 PO 4 1.0g /L, NaCl 0.625g /L, pH7.5. The results showed that under these conditions, Lactobionic Acid's yield was up to 102.614g /L, conversion ratio was 93.05%, which was 9.35% higher than that of non-optimized medium which was 93.84g /L.
  • [1]

    Tasic-Kostov M, Savic S, Lukic M, et al.Lactobionic acid in a natural alkylpolyglucoside-based vehicle:assessing safety and efficacy aspects in comparison to glycolic acid[J].Journal of Cosmetic Dermatology, 2010, 9:3-10.

    [2]

    Barbara A, Green.Hydroxy Acids and Beyond[J].Pierce Mattie Public Relations Inc Cosmetic Forecast, 2004:38-41.

    [3]

    Ahmad S K, Brinch D S, Friis E P, et al.Toxicological Studies on Caltose Oxidase from Microduchium mivale expreused in Fusdrium Venenatum[J].Regu Latory toxicology and pharmacology, 2004, 39 (3) :256-270.

    [4]

    Southard J H, Belzer F O.Organ preservation[J], Annu Rev Med, 1995, 46:235-247.

    [5]

    Jain N K, Jain S K.Development and in vitro characterization of galactosylated low molecular weight chitosan nanoparticles bearing doxorubicin[J].American Association of pharmaceutical Scientists, 2010, 11:686-697.

    [6]

    Maki-Arvela P, Murzina E V, Campo B, et al.The effect of palladium dispersion and promoters on lactose oxidation kinetics[J].Research on Chemical Intermediates, 2010, 36:423-442.

    [7]

    Maki-Arvela P, Tokarev A V, Murzina E V, et al.Kinetics of lactose and rhamnose oxidation over supported metal catalysts[J].Physical Chemistry Chemical Physics, 2011, 13:9268-9280.

    [8]

    Belkacemi K, Hamoudi S.Chemocatalytic oxidation of lactose to lactobionic acid over PdeBi/SBA-15:reaction kinetics and modeling[J].Industrial and Engineering Chemistry Research, 2010, 49:6878-6889.

    [9]

    Pedruzzi I, Borges daSilva E A, Rodrigues A E.Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells:a kinetic study[J].Enzyme and Microbial Technology, 2011, 49:183-191.

    [10]

    Van Hecke W, Bhagwat A, Ludwig R, et al.Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid[J].Biotechnology and Bioengineering, 2009, 102:1475-1482.

    [11]

    Van Hecke W, Ludwig R, Dewulf J, et al.Bubble-free oxygenation of a bi-enzymatic system:effect on biocatalyst stability[J].Biotechnology and Bioengineering, 2009, 102:122-131.

    [12]

    Alonso S, Rendueles M, Diaz M.Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions[J].Bioresource Technology, 2011, 102:9730-9736.

    [13]

    Alonso S, Rendueles M, Diaz M.Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens[J].Bioresource Technology, 2012, 109:140-147.

    [14]

    Murakami H, Seko A, Azumi M, et al.Microbial Conversion of Lactose to Lactobionic Acid by Resting Cells of Burkholderia cepacia No.24[J].Japanese Applied Glycoscience, 2006, 53 (1) :7-11.

    [15]

    Gutiérrez L-F, Hamoudi S, Belkacemi K.Lactobionic acid:A high value-added lactose derivative for food and pharmaceutical applications[J].International Dairy Journal, 2012, 5:1-9.

    [16] 葛珍珍, 王杰, 周灿灿, 等.响应面法优化小球藻培养基[J].食品工业科技, 2012, 33 (16) :195-200.
    [17] 李文婧, 赵祥颖, 田延军, 等.γ-聚谷氨酸产生菌的发酵培养基优化[J].食品与发酵工业, 2010, 36 (3) :108-116.
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-21

目录

    /

    返回文章
    返回