• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

超声场作用下姜黄素的降解研究

超声场作用下姜黄素的降解研究[J]. 食品工业科技, 2013, (16): 287-290. DOI: 10.13386/j.issn1002-0306.2013.16.048
引用本文: 超声场作用下姜黄素的降解研究[J]. 食品工业科技, 2013, (16): 287-290. DOI: 10.13386/j.issn1002-0306.2013.16.048
Study on the degradation of curcumin under the ultrasonic field[J]. Science and Technology of Food Industry, 2013, (16): 287-290. DOI: 10.13386/j.issn1002-0306.2013.16.048
Citation: Study on the degradation of curcumin under the ultrasonic field[J]. Science and Technology of Food Industry, 2013, (16): 287-290. DOI: 10.13386/j.issn1002-0306.2013.16.048

超声场作用下姜黄素的降解研究

基金项目: 

国家“十二五科技支撑重点项目”(2011BAD23B03);

详细信息
  • 中图分类号: TS201.2

Study on the degradation of curcumin under the ultrasonic field

  • 摘要: 以姜黄素、阿魏酸、香兰素为研究对象,研究了单频超声、双频复合超声和双频交变超声对姜黄素的降解、阿魏酸和香兰素的生成的影响。通过均匀设计实验,以阿魏酸为目标产物优化设计时,超声频率50kHz下,超声功率100W,温度65℃,乙醇浓度30%,pH11时,阿魏酸浓度为0.81mg/L,产量最多。超声频率50/135kHz复频交变条件下,超声功率20W,温度80℃,乙醇浓度70%,pH11时,香兰素浓度为2.93mg/L,产量最多。实验表明,在高温碱性的超声环境下,姜黄素会降解生成阿魏酸和香兰素。可以通过改变条件,促使姜黄素降解,从而为阿魏酸和香兰素的制备提供另一种途径。 
    Abstract: This article with curcumin, ferulic acid, vanillin as the research object, to research the influence of single-frequency ultrasound , double-frequency compound ultrasonic and double-frequency alternating ultrasound to curcumin degradation and the other two materials generation. By using homogenous design experiments, ferulic acid as the goal to optimize the design of the product, under the ultrasonic frequency 50kHz, ultrasonic power 100W, 65℃ , 30% ethanol, pH11, ferulic acid concentration was 0.81mg/L, the most productive was got. 50/135kHz -frequency ultrasonic frequency alternating conditions, ultrasonic power 20W, temperature 80℃ , ethanol concentration 70% , pH11, vanillin concentration was 2.93mg/L, the most productive was got. Results indicated that, ultrasonic in high temperature alkaline environment, curcumin would degraded into ferulic acid and vanillin. By changing these conditions to promote the degradation of curcumin, thus provided another way to preparation of ferulic acid and vanillin.
  • [1] 刘红星, 陈福北, 黄初升.广西姜黄挥发油两种提取方法的比较研究[J].广西植物, 2007, 27 (5) :796-800.
    [2] 张炎强, 李湘洲, 周雯雯.姜黄色素的提取与检测技术研究进展[J].经济林研究, 2006, 24 (2) :74-77.
    [3] 崔晶, 翟光喜, 娄红祥.姜黄素的研究进展[J].中南药学, 2005, 3 (2) :108-111.
    [4] 盛柳青, 颜继忠, 梁万根.姜黄素的研究进展及应用概况[J].中国西部科技, 2006, 4 (1) :14-15.
    [5] 王贤纯.姜黄色素及其提制方法[J].生物学杂志, 2000, 17 (1) :36-37.
    [6] 罗红霞, 方清茂, 潘晓鸥.姜黄素的提取及其含量测定研究进展[J].中国药业, 2004, 13 (6) :74-75.
    [7] 李湘洲, 张炎强, 刘艳华, 等.不同方法提取姜黄色素的研究[J].林产化学与工业, 2006, 26 (4) :83-86.
    [8]

    Pak Y, Patek R, Mayersohn M.Sensitive and rapid isocraticliquid chrom atography method for the quantitation of curcumin in plasma[J].Journal of Chromatography, 2003, 796 (2) :339-346.

    [9]

    Gayathri N, Kalpana P, Jamuna P, et al.Influence of antioxidant spices on the retention of b-carotene in vegetables during domestic cooking processes[J].Food Chemistry, 2005, 84 (7) :35-43.

    [10]

    Daniel S, Limson L, Dairam A, et al.Through metal binding, curcumin protects against leadand cadmium-induced lipid peroxidation in rat brain[J].Journal of Inorganic Biochemistry, 2006, 98 (9) :266-275.

    [11]

    Ahsan H, Parveen N, Khan U, et al.Prooxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin[J].Chemico-Biological Interactions, 1999, 121 (3) :161-175.

    [12]

    Negi S, Jayaprakasha K, Jaganmohan L, et al.Antimicrobial activity of turmeric oil:A by-product from curcumin manufacturer[J].Agricultural and Food Chemistry, 1999, 47 (5) :4297-4300.

    [13]

    Rachana T, Shailesh D.Mechanism (s) of turmeric-mediated protective effects against benzo (a) pyrenederived DNA adducts[J].Cancer Letters, 2002, 175 (6) :79-88.

    [14]

    Kapoor S, Priyadarsini I.Protection of radiation induced protein damage by curcumin[J].Biophysical Chemistry, 2006, 92 (4) :119-126.

    [15]

    Skrzypezac-Jankun E, McCabe P, Selman H, et al.Curcumin inhibits lipoxygenase by binding to its centralcavity:Theoretical and X-ray evidence[J].International Journal of Molecular Medicine, 2008, 6 (1) :521-526.

    [16]

    Eigner D, Scholz D.Ferula asa-foetida and Curcuma longa, in traditional medical treatment and diet in Nepal[J].Journal of Ethanopharmacology, 1999, 67 (7) :1-6.

    [17] 韩刚, 霍文, 李秋影, 等.姜黄素的稳定性研究[J].中成药, 2007, 29 (2) :291-293.
    [18] 冯生光, 覃耿垚, 刘红霞, 等.姜黄素降解产物的分离鉴定及姜黄素的稳定性考察[J].沈阳药科大学学报, 2009, 26 (5) :361-365.
    [19] 崔晶, 翟光喜, 娄红祥.姜黄素的研究进展[J].中南药学杂志, 2005, 3 (2) :108-111.
    [20] 张志健, 李新生, 陈锐.超声浸提技术在杜仲叶饮料加工中的应用研究[J].食品工业科技, 2008, 29 (11) :181-185.
    [21] 冯若.超声手册[M].南京:南京大学出版社, 1999:323-324.
    [22] 应崇福.超声学[M].北京:科学技术出版社, 1990:170-171.
    [23] 李辉, 李亚男, 龙凌亮, 等.超声助提杜仲叶中绿原酸的溶剂效应[J].吉首大学学报, 2006, 27 (4) :90-92.
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-14

目录

    /

    返回文章
    返回