• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

乳酸菌蛋白水解体系及相关基因表达的研究进展

乳酸菌蛋白水解体系及相关基因表达的研究进展[J]. 食品工业科技, 2013, (03): 383-386. DOI: 10.13386/j.issn1002-0306.2013.03.059
引用本文: 乳酸菌蛋白水解体系及相关基因表达的研究进展[J]. 食品工业科技, 2013, (03): 383-386. DOI: 10.13386/j.issn1002-0306.2013.03.059
Research progress in proteolysis system of lactic acid bacteria and related gene expression[J]. Science and Technology of Food Industry, 2013, (03): 383-386. DOI: 10.13386/j.issn1002-0306.2013.03.059
Citation: Research progress in proteolysis system of lactic acid bacteria and related gene expression[J]. Science and Technology of Food Industry, 2013, (03): 383-386. DOI: 10.13386/j.issn1002-0306.2013.03.059

乳酸菌蛋白水解体系及相关基因表达的研究进展

基金项目: 

长江学者和创新团队发展计划资助(IRT-0959-204);

详细信息
  • 中图分类号: TS201.3

Research progress in proteolysis system of lactic acid bacteria and related gene expression

  • 摘要: 乳酸菌的蛋白水解体系包括胞外酶、转运系统和多种胞内酶。它们将外源蛋白质逐步水解成能被乳酸菌直接利用的游离氨基酸,弥补了因乳酸菌自身不能直接利用外源无机氮和蛋白质的缺陷,对于乳酸菌的正常生长具有非常重要的意义。目前,国内外正在研究利用现代分子技术,从基因表达层面检测不同菌株之间或菌株经过不同处理前后关键蛋白水解酶的表达水平差异,筛选出蛋白酶高表达量的菌株,从而得到蛋白水解能力强的优质乳酸菌发酵剂菌株。本文将对乳酸菌的蛋白水解体系及近几年乳酸菌蛋白水解体系中相关基因表达情况的研究进展进行综述,以期为乳酸菌蛋白质代谢的进一步研究提供参考。 
    Abstract: The proteolytic system of lactic acid bacteria which hydrolyzes exogenous protein into free amino acid were consists of extracellular peptidases, the peptide transport systems and a variety of intracellular peptidases. That makes up of the deficiency that lactic acid bacteria can not directly use inorganic nitrogen and protein. Therefore the proteolytic system has very important significance for the normal growth of lactic acid bacteria. Currently some scientists use the modern molecular techniques to study the gene expression levels of the key proteolytic enzymes of the different strains or the strains after different treatments in order to screen out the strains in which the genes of proteinases has high expression level and obtain the high-quality starter lactic acid bacteria strains.The proteolytic system of lactic acid bacteria and the advances in the expression level of genes related to the proteolytic system of lactic acid bacteria were reviewed in this paper with the hope of providing reference materials for the further study on protein metabolism of lactic acid bacteria.
  • [1]

    Henriksen M E, Nilssond.Industrial application of genetically medified microorganisms:gene technology at Chr.Hansen A/S[J].International Dairy Journal, 1999, 9:17-23.

    [2]

    Eric Guedon, Pierre Renault, Ehrlich S D, et al.Transcriptional pattern of genes coding for the proteolytic system of lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply[J].Journal of Bacteriology, 2001, 183 (12) :3614-3622.

    [3]

    Christensen J E, Dudley E G, Pedersin J A, et al.Peptidases and amino acid catabolism in lactic acid bacteria[J].Antonie van Leeuwenhoek, 1999, 76:217-246.

    [4]

    Roland J Siezen.Multi-Domain, cell-envelope proteinases of lactic acid bacteria[J].Antonie van Leeuwenhoek, 1999, 76:139-155.

    [5]

    Picon A, García-Casado M A, Nuez M.Proteolytic activities, peptide utilization and oligopeptide transport systems of wild Lactococcus lactis strains[J].International Dairy Journal, 2010, 20 (3) :156-162.

    [6]

    Edmund R S Kunji, Igor Mierau, Anja Hagfing, et al.The proteolytic systems of lactic acid bacteria[J].Antonie van Leeuwenhoek, 1996, 70:187-221.

    [7]

    Sadat-Mekmene L, Jardin J, Corre C, et al.Simultaneous Presence of PrtH and PrtH2Proteinases in Lactobacillus helveticus Strains Improves Breakdown of the Pureαs1-Casein[J].Applied and Environmental Microbiology, 2011, 77 (1) :179-186.

    [8]

    Foucaud C, Kunji E R S, Hagting A, et al.Specificity of peptide transport systems in Lactococcus lactis:evidence for a third system which transports hydrophobic di-and tripeptides[J].J Bacteriol, 1995, 177 (80) :4652-4657.

    [9]

    Kunji E R S, Hagting A, de Vried C J, et al.Transport ofβ-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis[J].J Biol Chem, 1995, 270 (4) :1569-1574.

    [10]

    Tynkkynen S, Buist G, Kunji E, et al.Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis[J].J Bacteriol, 1993, 175 (12) :7523-7532.

    [11]

    Savijoki K, Palva A.Purification and molecular characterization of a tripeptidase (PepT) from Lactobacillus helveticus[J].Applied and Environmental Microbiology, 2000, 66 (2) :794-800.

    [12] 白凤翎, 张柏林, 赵宏飞.乳酸菌蛋白代谢研究进展[J].食品科学, 2010, 31 (19) :381-384.
    [13]

    Mayo B, Kok J, Venema K, et al.Molecular cloning and sequence analysis of the X-propyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp.cremoris[J].Applied and Environmental Microbiology, 1991, 57 (1) :38-44.

    [14] 朱捷, 杨成君, 王军.荧光定量PCR技术及其在科研中的应用[J].生物技术通报, 2009 (2) :73-76.
    [15]

    Kenneth J, Livak, Thomas D Schmittgen.Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the2-ΔΔCT Method[J].Methods, 2001, 25:402-408.

    [16]

    Hubert G M Niesters.Quantitation of viral load using real-time amplification[J].Methods, 2001, 25:419-429.

    [17] 黄桂东.Laetobacillus brevis NCL912的耐酸特性及其酸胁迫下差异表达蛋白的研究[D].南昌:南昌大学, 2011.
    [18]

    Kirsi Peltoniemi, Erkki Vesanto, Airi Palva.Genetic characterization of an oligopeptide transport system from Lactobacillus delbrueckii subsp.Bulgaricus[J].Arch Microbiol, 2002, 177:457-467.

    [19]

    Henriksen M E, Nilssond.Industrial application of genetically medified microorganisms:gene technology at Chr.Hansen A/S[J].International Dairy Journal, 1999, 9:17-23.

    [20]

    Leila Sadat-Mekmene, Magali Genay, Danièle Atlan, et al.Original features of cell-envelope proteinases of Lactobacillus helveticus.A review[J].International Journal of Food Microbiology, 2011, 146:1-13.

    [21]

    Azcarate-Peril M A, Tallon R, Klaenhammer T R.Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk[J].Journal of Dairy Science, 2009, 92 (3) :870-886.

    [22]

    Ji-Cheng Wang, Wen-Yi Zhang, Zhi Zhong, et al.Transcriptome analysis of probiotic Lactobacillus casei Zhang during fermentation in soymilk[J].J Ind Microbiol Biotechnol, 2012, 39:191-206.

    [23]

    Rina Wu, Wenyi Zhang, Tiansong Sun, et al.Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress[J].International Journal of Food Microbiology, 2011, 147:181-187.

    [24]

    Nicoline Vermeulen, Melanie Pavlovic, Matthias A, et al.Functional characterization of the proteolytic system of lactobacillus sanfranciscensis dsm20451t during growth insourdough[J].Applied and Environmental Microbiology, 2005, 71 (10) :6260-6266.

    [25]

    Magnani D, Barre O, Gerber S D, et al.Characterization of the CopR regulon of Lactococcus lactis IL1403[J].J Bacteriol, 2008, 190 (2) :536-545.

    [26]

    Larsen R, Van Hijum S, Martinussen J, et al.Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons[J].Applied and Environmental Microbiology, 2008, 74 (15) :4768-4771.

    [27]

    Ramiah K, Van Reenen C A, Dicks L M T.Expression of themucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum423, monitored with real-time PCR[J].International Journal of Food Microbiology, 2007, 116:405-409.

    [28]

    Marco M L, Kleerebezem M.Assessment of real-time RT-PCR for quantification of Lactobacillus plantarum gene expression during stationary phase and nutrient starvation[J].Journal of Applied Microbiology, 2008, 104:587-594.

    [29] 孙洁.乳酸菌发酵剂菌株的自溶特性及机理研究[D].中国农业科学院, 2010.
计量
  • 文章访问数:  263
  • HTML全文浏览量:  29
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-12

目录

    /

    返回文章
    返回