基于GRNN的米糠蛋白提取条件优化研究
详细信息Study on the extraction optimization of rice bran protein based on GRNN
-
摘要: 针对米糠蛋白碱法生产中存在的产品得率低、色泽深等普遍问题,本文在单因素实验确定的几个蛋白提取关键影响因素基础上,采用中心组合实验的方法探讨了因素之间交互作用的问题,最后利用广义回归神经网络技术(general regression neural network,GRNN)对蛋白提取率和提取液色泽进行了多目标优化问题研究。GRNN模型结果显示:在温度36.5℃,液料比11.5:1(v/w),pH10.9,辅助剂用量0.56%的条件下,米糠蛋白提取率理论值为61.0%,色度值为53.3,与实际值的误差分别为3.6%和4.7%,且相比较目前工业生产普遍使用的生产条件,蛋白提取率与色度值分别提高了31.4%与43.3%,采用GRNN方法优化的米糠蛋白提取条件具有很好的实用价值。Abstract: According to the general problems including the low yield and the deep colour of product during the alkali-extraction process of rice bran protein, the cross-action of different factors was discussed through central composite experiments on the basis of the key factors determined by single factor experiments.Furthermore, the optimization of interaction-effect including protein yield and color were performed by generalized regression neural network (GRNN) method.The GRNN model results showed that 61.0% protein yield and 53.3 color value were obtained under the conditions of temperature 36.5℃, ratio of solve to material 11.5:1 (v/w) , pH value 10.9, and auxiliary agent amount 0.56%, which existed a deviation of 3.6% and 4.7% with actual values, respectively.Compared with the conditions for industrial production, the protein extraction yield and colour value raised 31.4% and 43.3%, respectively, under the optimized conditions.It was proved that the optimized extraction conditions of rice bran protein by GRNN had great pragmatic value for industrial production.
-
Keywords:
- GRNN;rice bran;protein;extraction;optimization; /
-
[1] 李新华, 富艳鑫, 郑煜焱.米糠蛋白提取工艺条件的优化[J].食品科学, 2010, 31 (22) :251-254. [2] 陈季旺, 孙庆杰, 夏文水, 等.碱酶两步法制备大米蛋白的研究[J].农业工程学报, 2006, 22 (5) :169-172. [3] 陈季旺, 姚慧源, 张小勇, 等.米糠可溶性蛋白的提取工艺和特性研究[J].中国油脂, 2003, 28 (2) :46-50. [4] Hamada J S.Use of proteases to enhance solubilization of rice bran proteins[J].Journal of Food Biochemistry, 1999, 23:307-321.
[5] Kaewka K, Therakulkait C, Cadwallader K R.Effect of preparation conditions on composition and sensory aroma characteristics of acid hydrolyzed rice bran protein concentrate[J].Journal of Cereal Science, 2009, 50:56-60.
[6] 刘秀清, 宇仁德, 范东凯.基于广义回归神经网络的交通事故预测[J].山东理工大学学报:自然科学版, 2007, 21 (2) :28-31. [7] Kulkarni S G, Chaudhary A K, Nandi S, et al.Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN) [J].Biochemical Engineering Journal, 2004, 18:193-210.
[8] 张德丰.MATLAB神经网络应用设计[M].北京:机械工业出版社, 2008. [9] 章德宾, 徐家鹏, 许建军, 等.基于监测数据和BP神经网络的食品安全预警模型[J].农业工程学报, 2010, 26 (1) :221-226. [10] 陶菲.真空预冷处理延长白蘑菇贮藏期的研究[D].无锡:江南大学, 2006. [11] 魏艳强.基于RBF神经网络的货运量预测模型研究[D].天津:天津理工大学, 2007. [12] Cochran W G, Cox G M.Some methods for the study of response surfaces.In Experimental designs[M].New York:Wiley, 1992:335-375.
[13] 温焕斌, 曹晓虹, 李翠娟, 等.米糠蛋白提取工艺优化及其特性研究[J].扬州大学学报:农业与生命科学版, 2010, 31 (2) :72-77.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: