韦环, 刘珈玲, 廖强. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法快速筛查及测定蜂蜜中 20 种植物源毒性成分 [J]. 食品工业科技, 2021, 42(17): 285-293. doi: 10.13386/j.issn1002-0306.2020110234

WEI Huan, LIU Jialing, LIAO Qiang. Rapid Screening and Determination of 20 Plant-Derived Toxins in Honey by UPLC-Q-Exactive Quadrupole-Electrostatic Field Track Trap High Resolution Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(17): 285–293. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110234

·分析检测·

超高效液相色谱-四极杆/静电场轨道阱高分辨 质谱法快速筛查及测定蜂蜜中 20 种 植物源毒性成分

韦 环,刘珈玲,廖 强*

(广西-东盟食品检验检测中心,广西南宁 530021)

摘 要: 以超高效液相色谱-四极杆/静电场轨道阱高分辨质谱(ultra-performance liquid chromatography- tandem qexactive quadrupole-electrostatic field track trap high resolution mass spectrometry, UPLC-Q-Exactive) 建立蜂蜜中 20 种植物源毒性成分的快速筛查和测定方法,基于高分辨质谱的精准分子量和多级碎片信息确立了 20 种植物源毒 性成分的质谱数据库。以纯水提取样品,以混合型阳离子交换固相萃取小柱(Mixed-mode polymeric strong cation exchange and reversed-phase column, MCX)净化,采用 AQ-C₁₈色谱柱(2.1 mm×100 mm, 1.9 µm)进行分离,乙 腈和含 0.1% 甲酸的 10 mmol/L 甲酸铵水溶液作为流动相梯度洗脱,质谱采用全扫描/数据依赖的二级扫描模式 (full scan data-dependent MS/MS acquisition mode, Full MS/ddMS²),外标法定量。结果显示,20 种化合物在 10.0~200.0 µg/L 范围内,线性关系良好(r>0.99);该方法的检出限为 0.4~6.9 µg/kg;在 3 个加标水平下,平均回 收率为 74.1%~114.6%,相对标准偏差(RSD)为 0.2%~4.7%。该方法灵敏度高,准确可靠,操作简单,可对蜂蜜 中 20 种植物源性毒性成分进行快速筛查和定量分析。

关键词:植物源毒性成分,超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法,蜂蜜 中图分类号:TS207.3 文献标识码:A 文章编号:1002-0306(2021)17-0285-09 DOI: 10.13386/j.issn1002-0306.2020110234

Rapid Screening and Determination of 20 Plant-Derived Toxins in Honey by UPLC-Q-Exactive Quadrupole-Electrostatic Field Track Trap High Resolution Mass Spectrometry

WEI Huan, LIU Jialing, LIAO Qiang*

(Guangxi-Asian Food Inspection and Testing Center, Nanning 530021, China)

Abstract: In this study, the method was applied in the rapid screening and determination of 20 plant-derived toxins in honey by ultra-performance liquid chromatography-tandem Q-Exactive quadrupole-electrostatic field track trap high resolution mass spectrometry (UPLC-Q-Exactive). According to precise molecular weight of compounds and multistage fragment ion information detected by UPLC-Q-Exactive, an in-house database of 20 plant-derived toxins was established. The sample was extracted by pure water, and purified on a mixed-mode polymeric strong cation exchange and reversed-phase column (MCX). The extract was separated on an AQ-C₁₈ column (2.1 mm×100 mm, 1.9 μ m) through a mobile phase composition of acetonitrile and water (containing 0.1% formic acid and 10 mmol/L ammonium formate) in gradient elution mode. The high resolution mass spectrometry data was simultaneously acquired in full scan data-dependent MS/MS

收稿日期: 2020-11-24

基金项目:基于 HRMS 技术对蜂蜜中植物源性毒性成分的安全风险研究(KY201903)。

作者简介: 韦环(1984-), 男, 本科, 研究方向: 食品检验与质量标准研究, E-mail: 287167166i@qq.com。

^{*} 通信作者:廖强(1985-),男,本科,副主任药师,研究方向:食品、药品质量分析及监管,E-mail: 19972802@qq.com。

acquisition mode(Full MS/ddMS²), and external standard calibration curves were used for quantification. Results and conclusions were drawn as follows. First, desirable linearities of 20 plant-derived toxins were evaluated among the peak area responses and concentrations in the range of 10.0 to 200.0 μ g/L, and the correlative coefficients were over 0.99. The limits of detection were 0.4~6.9 μ g/kg. The average recoveries of all the toxins were 74.1%~114.6% at three different levels, and the relative standard deviations (RSDs) ranged between 0.2%~4.7%. This method is sensitive, accurate, reliable and easy to operate, which can be used for rapid screening and quantitative analysis of the 20 plant- derived toxins in honey. **Key words:** plant-derived toxins; UPLC- Q-exactive; honey

我国《蜜蜂产品术语》(GB/T 20573-2006)对蜂 蜜的定义为:是蜜蜂采集植物的花蜜,蜜露等分泌物, 与自身分泌物结合后在巢脾内经过充分酿造而成的 天然甜物质。不仅口感香甜,且具有润肺止咳、润肠 通便、清热解毒等功效[1-2],因此深受人们的喜爱。 蜂蜜本无毒,但在生产过程中被污染或蜜蜂采集有毒 花蜜酿制而成的蜂蜜可能会引起中毒。尤其野生蜂 蜜是食物中毒事件的主要致病因子之—[3-4]。建国以 来广西、云南、贵州、福建多地都相继报道了食用野 生蜂蜜中毒事件[5-7]。食用有毒蜂蜜后会引发一系列 的中毒症状,如恶心、呕吐、腹泻、四肢麻木、血压下 降、呼吸中枢麻痹等,严重将引发休克甚至死亡[4,6,8], 且中毒程度及症状与蜂蜜所含的毒素种类和含量密 切相关。有毒蜂蜜中所含毒素主要来源于蜜蜂采集 了有毒源性的植物花粉,如断肠草、雷公藤和狼毒 等[6,8-10]; 雷公藤、断肠草、洋金花、乌头、千里光等所 含毒性物质主要为生物碱和萜类化合物,如乌头中的 二萜类生物碱:乌头碱[11];博落回中的异喹啉类生物 碱:小檗碱、原阿片碱和别隐品碱[12];菊科(如千里光 属和泽兰属)中的吡咯里西啶类生物碱:千里光宁 碱、千里光菲林生物碱、倒千里光碱[10,13];胡蔓藤属 中的吲哚类生物碱:钩吻碱、钩吻素已、胡蔓藤碱 丙、胡蔓藤碱丁[14]; 马桑属中的萜类化合物马桑 亭^[15] 等。

《食品安全国家标准蜂蜜》(GB 14963-2011)中 明确规定"蜜蜂采集植物的花蜜、分泌物或蜜露应安 全无毒,不得来源于雷公藤、博落回、狼毒等有毒蜜 源植物。"但并未列出具体植物源毒性成分和相关检 测方法。目前国内对植物中相关毒性物质的检测方 法主要有液相色谱法[16-17]、气相色谱法[18]、酶联免疫 吸附分析[19-20]、薄层层析测定法[21-22]、气相色谱-质 谱法[23-25]、液相色谱-质谱法[15-16,26-28] 等。液相色谱 法检测灵敏度较低,适合于含量较高的样品如中草 药;酶联免疫吸附分析法酶活性易损失、无法对各类 成分进行准确定量分析;气相色谱-质谱法及液相色 谱-质谱法均可实现微量衡量同时多组分分析,是目 前司法鉴定主要方法,但气相色谱-质谱法不适用于 热不稳性及高沸点化合物,液相色谱-质谱法可有效 解决这样难题,但传统的三重四极杆质谱需要标准物 质实现定性确证。高分辨质谱仪可依据其高质量准 确度、高质量分辨率的全扫描数据在不需要标准物 质的情况下实现定性确证,在食品定向和非定向筛查

中应用广泛。

目前我国关于蜂蜜的质量安全研究多以兽药残 留^[29]、农药残留^[30]、重金属^[31]和真伪鉴别^[32-33]为主, 对于蜂蜜中植物源性毒性成分的研究甚少,仅有少数 对有毒蜜源性植物雷公藤、昆明山海棠和博落回中 毒性成分及其分析方法进行了报道^[6,10,34-35],但是研 究成分单一,各方法相对独立且选择性差、定性能力 弱。食物中毒作为突发公共卫生事件,往往需要在短 时间内查明中毒原因,对于行踪不定的野生蜜蜂其蜜 源难以通过其行踪来推断其蜜源植物。因此,迫切需 要建立蜂蜜中植物源性多种毒性物质的快速筛查方 法。四极杆/静电场轨道阱高分辨率质谱仪(Q-Exactive)具有良好的定性分析和高分辨率的特点, 在单个分析周期内即可完成对样品高通量、高精度 的一级、二级扫描,为化合物的准确鉴定提供了客观 依据。

本研究以固相萃取法纯化样品,应用高效液相 色谱-四极杆/静电场轨道阱高分辨率质谱联用技术, 建立蜂蜜中 20 种植物源毒性成分的快速筛查和测 定方法,基于高分辨质谱的精准分子量和多级碎片信 息确立了 20 种植物源毒性成分的质谱数据库。该 方法快速、准确、通量高,为进一步开展蜂蜜溯源,安 全性评价和监测评估食用蜂蜜中毒提供参考,保障了 蜂蜜的食用安全和提升了质量控制水平。

1 材料与方法

1.1 材料与仪器

标准物质野百合碱(CAS: 315-22-0, 纯度 99.48%)、钩吻碱(CAS: 509-15-9,纯度 98.19%)、东 莨菪碱氢溴酸盐(CAS: 114-49-8, 纯度 98.7%)、倒千 里光碱(CAS: 480-54-6, 纯度 98.02%)、钩吻素子 (CAS: 1358-76-5, 纯度 98.34%)、千里光宁(CAS: 130-01-8, 纯度 99.48%)、钩吻碱己(CAS: 82354-38-9, 纯度 99.53%)、马桑亭(CAS: 91653-75-7, 纯度 98.96%)、闹羊花毒素 II(CAS: 26116-89-2, 纯度 99.79%)、闹羊花毒素 V(CAS: 37720-86-8, 纯度 99.82%)、原阿片碱(CAS: 130-86-9, 纯度 99.56%)、 A-别隐品碱(CAS: 485-91-6, 纯度 98.58%)、次乌头 碱(CAS: 6900-87-4, 纯度 99.04%)、乌头碱(CAS: 302-27-2, 纯度 98.52%) 美国斯坦福化学公司; 春 千里光碱(CAS: 72755-25-0, 纯度 99.72%)、春千里 光碱 N氧化物(CAS: 101687-28-9, 纯度 99.87%)、 N-氧化芝麻菜叶千里光(CAS: 123864-94-8, 纯度 99.35%)、胡蔓藤碱乙(CAS: 82375-29-9, 纯度 98%)

德国 PhytoLab 公司; 千里光菲灵碱(CAS: 480-81-9, 纯度 99.53%) 成都德思特生物技术有限公司; 闹 羊花毒素 III(CAS: 26342-66-5, 纯度 98.6%) 上海 源业生物科技有限公司); SPE 小柱: 混合型阳离子交 换固相萃取小柱(MCX, 60 mg, 3 cc) 美国沃特斯 有限公司; 甲醇、乙腈、甲酸 均为色谱纯, 德国默克 公司; 其余 均为分析纯; 实验用样品为蜜博士百花 蜂蜜(批号 20190115) 广西蜜博士蜂业有限责任公 司生产, 经预检验样品中不含有上述 20 种化合物), 其余 66 批均购于广西南宁、崇左、贵港、来宾、钦州 等地农贸市场或蜜蜂养植基地。

Ultimate 3000 超高效液相色谱仪-Q-Exactive 四极杆/静电场轨道阱高分辨质谱仪 美国 Thermo Fisher Scientific 公司; XS205 DU 电子分析天平 瑞 士梅特勒-托利多公司; Multi Reax 全自动振荡仪 德国 Heidolph 公司。

1.2 实验方法

1.2.1 标准溶液的配制 准确称取野百合碱、钩吻 碱、东茛菪碱氢溴酸盐、倒千里光碱、钩吻素子、千 里光宁、钩吻碱己、马桑亭、闹羊花毒素 II、闹羊花 毒素 III、闹羊花毒素 V、原阿片碱、别隐品碱、次乌 头碱、乌头碱、春千里光碱、春千里光碱 N 氧化物、 N-氧化芝麻菜叶千里光、胡蔓藤碱乙、千里光菲灵碱 等 20 种标准物质各约 10 mg(精确至 0.1 mg),分别 置于 10 mL 容量瓶中,用甲醇溶解并定容至刻度,配 制成约 1.0 mg/mL 的标准储备溶液。分别精密量取 各标准储备溶液 1 mL,置于同一 100 mL 容量瓶中, 用甲醇稀释并定容至刻度,得到 10 μg/mL 混合标准 中间溶液。

1.2.2 样品处理 称取 1 g(精确至 0.01 g)样品,置于 15 mL 聚丙烯离心管中,加入水 5 mL,振荡使溶解,将所有溶液通过混合型阳离子交换固相萃取小柱使用前依次用 5 mL 甲醇、5 mL 水活化)中,弃去洗脱液,然后用 10 mL 水淋洗小柱,弃去,再用 9 mL 5% 氨化甲醇进行洗脱,收集洗脱液至 10 mL 容量瓶中,使用 5% 氨化甲醇定容,混匀后经 0.22 μm 有机相滤膜过滤,即得。

1.2.3 色谱条件

1.2.3.1 液相条件 色谱柱: Thermo GOLD AQ-C₁₈柱(2.1 mm×100 mm, 1.9 μm); 柱温: 30 ℃; 进样体积: 2 μL; 流速: 0.3 mL/min; 流动相: A 为含 0.1%甲酸的 10 mmol/L 甲酸铵溶液, B 为 0.1%甲酸乙腈。梯度洗脱程序: 0.0~5.0 min, 5%~20% B; 5.0~10.0 min, 20%~45% B; 10.0~13.0 min, 45%~90% B; 13.0~14.0 min, 90 % B; 14.0~15.0 min, 90%~5% B; 15.0~20.0 min, 5% B。

1.2.3.2 质谱条件 离子源采用 HESI 源(heated ESI),喷雾电压为 3.5 kV(+)/3.0 kV(-),透镜电压 为 50 V,离子传输管温度: 320 °C, 鞘气流量: 35 arb;

辅助气体流量: 10 arb; 辅助气温度: 300 °C。扫描方 式:采用正、负离子同时扫描,采集模式: Full MS/dd-MS²模式,其中一级全扫描的分辨率: 70000 FWHM, 扫描范围: m/z 50~1200,自动增益(AGC): 3×10⁶,最 大驻留时间: 100 ms; 二级扫描分辨率: 17500 FWHM, 自动增益(AGC): 2×10⁵,最大驻留时间: 50 ms; 质荷 比窗口宽度(Isolation Window): m/z 2.0; 顶点激发 (Apex tigger): 4~8 s; 排除同位素峰(Exclude isotopes)设为"on",动态排除(Dynamic Exclusion) 设为 6.0 s, 归一化碰撞能量(NCE)为 20%、40%、 60%。20 种物质其他条件详见表 1。

1.3 数据库的建立

精取"1.2.1"标准使用液 1.0 mL, 置于100 mL 容 量瓶中用甲醇定容至刻度; 按"1.2.3"条件进样, 将得 到的高分辨质谱数据通过 Xcalibar 软件得到目标物 的准确质量数、保留时间、二级碎片离子等信息, 将 信息输入到筛查软件 TraceFinder 下, 建立质谱数据 库(Compound Database)。

1.4 定量检测

本实验采用 Full MS/dd-MS2 模式,选择母离子 (见表 1)进行外标法定量。

2 结果与分析

2.1 色谱条件的优化

由于本次实验 20 种化合物来源于多种植物, 且 大部分为生物碱类成分, 极性差异较大。故本实验分 别考察了 Thermo GOLD AQ-C₁₈、Agilent HILIC (150mm×2.1mm, 3μm)、ACEExcel2C₁₈-PFP(150mm× 2.1 mm, 3μm)三种类型的色谱柱,结果 Thermo GOLD AQ-C₁₈ 在 20 种化合物中分离效果和峰形最 佳; 在流动相的考察中,结果发现乙腈离子化能力强 于甲醇, 且基线噪音较低; 0.1% 甲酸乙腈能有效改善 峰形及离子化效果, 故选 0.1% 甲酸乙腈作为有机 相; 水相中加入 0.1% 甲酸后离子化效率、化合物响 应值更高; 加入 10 mmol/L 甲酸铵后能兼顾负离子 扫描时也得到较好的响应, 故最终 0.1% 甲酸(含 10 mmol/L 甲酸铵)作为水相流动相。

2.2 质谱条件优化

2.2.1 质谱参数的优化 本实验使用了 Full MS/dd-MS² 采集模式,该模式首先进行一级全扫描,然后对 指定的前级离子做进一步的二级扫描。在实验室中, 对一级全扫描的质谱参数先后考察了 35000、70000 及 140000 的分辨率对质谱信号的影响,结果显示使 用 140000 的分辨率一级离子的灵敏度会显著降低, 这可能是由于过高的分辨率会显著降低扫描速度,造 成一级扫描点数不足,造成色谱峰形变差,影响分析, 故选择了一级质谱扫描采用 70000 的分辨率。

2.2.2 物质电离方式的优化 在 1.2.3 质谱条件下, 间羊花毒素 II、闹羊花毒素 III 易发生离子源内裂 解, 闹羊花毒素 II m/z=410.22990 考虑到其结构可能

表 1 20 种植物源性毒性成分的分子式、保留时间、精确质量数、质量数偏差及主要二级离子

Table 1 Molecular formula, retention time, precise mass number, mass number deviation and main secondary ion mass number of 20

nlan	t-deru	red to	C1C
Dian	t-uciiv	u u u u	VIC 1

序号	化合物名称	英文名	分子式	分子量	保留时间 (min)	电离模式	母离子理论 质量数	母离子精确 质量数	质量数偏 差/10 ⁻⁶	主要二级离子
1	野百合碱	Monocrotaline	C ₁₆ H ₂₃ NO ₆	325.36	2.44	$[M+H]^+$	326.15981	326.15939	1.3	120.08101; 237.13599; 194.11775
2	N-氧化芝麻菜 叶千里光	Erucifoline N-oxide	$\mathrm{C_{18}H_{23}O_{7}N}$	365.38	4.02	$[M+H]^+$	366.15473	366.15393	2.2	118.06548; 136.07585; 94.06566
3	东莨菪碱	Scopolamine	$\mathrm{C}_{17}\mathrm{H}_{21}\mathrm{NO}_4$	384.26	4.84	$[M+H]^+$	304.15433	304.15383	1.6	138.09146; 156.10205; 121.06499
4	钩吻碱	gelsemine free base	$C_{20}H_{22}N_2O_2$	323.18	5.02	$[M+H]^+$	323.17540	323.17487	1.6	236.10727; 70.06586; 195.0684
5	倒千里光碱	Retrorsine	$\mathrm{C}_{18}\mathrm{H}_{25}\mathrm{NO}_{6}$	351.39	5.13	$[M+H]^+$	352.17546	352.17487	1.7	120.0811; 138.09152; 324.18033
6	N-去氧千里光 菲灵碱	Seneciphylline N- oxide	$\mathrm{C}_{18}\mathrm{H}_{23}\mathrm{NO}_{5}$	333.39	5.58	$[M+H]^+$	334.1649	334.16434	1.7	306.16986; 120.08105; 138.09143
7	闹羊花毒素III	Rhodojaponin Ⅲ	$C_{20}H_{32}O_{6}$	368.46	6.10	$[M+H]^+$	297.18491	297.18439	1.7	297.18439; 251.17896; 197.13234
8	钩吻素子	Koumine	$C_{20}H_{22}N_2O$	306.41	6.17	$[M+H]^+$	307.18049	307.17978	2.3	238.12248; 220.11275; 176.10713
9	马桑亭	Coriatin	$C_{15}H_{20}O_{6}$	296	6.27	[M-H] ⁻	295.11871	295.11883	-0.4	201.05582; 175.07654; 219.06688
10	千里光宁(千 里光碱)	Senecionine	$\mathrm{C}_{18}\mathrm{H}_{25}\mathrm{NO}_{5}$	335.39	6.54	$[M+H]^+$	336.18055	336.17985	2.1	120.08086; 308.18628; 138.09155
11	春千里光碱	Senecivernine	$C_{18}H_{25}O_5N$	335.39	6.65	$[M+H]^+$	336.18055	336.17986	2.1	120.08083; 308.18628; 308.18496
12	春千里光碱 N- 氧化物	Senecivernine N- oxide	$C_{18}H_{25}O_6N$	351.39	6.84	$[M+H]^+$	352.17546	352.17507	1.1	120.08109; 136.07513; 94.06559
13	钩吻碱己	Gelsenicine	$C_{19}H_{22}N_2O_3$	326.39	7.03	$[M+H]^+$	327.17032	327.16993	1.2	296.15202; 265.13367; 98.98467
14	闹羊花毒素V	Rhodojaponin V	$C_{22}H_{34}O_7$	410.5	8.18	[M+Na] ⁺	433.21967	433.21957	0.2	415.20880; 92.41895; 373.19678
15	原阿片碱	Protopine	C ₂₀ H ₁₉ NO ₅	353.37	8.18	$[M+H]^+$	354.13360	354.13322	1.1	188.07082; 149.05986; 275.07037
16	闹羊花毒素Ⅱ	Rhodojaponin II	$C_{22}H_{34}O_7$	410.51	8.27	$[M+H]^+$	297.18491	297.18439	1.7	279.17426; 251.17934; 223.14804
17	胡蔓藤碱乙	Humantenine	$C_{21}H_{26}N_2O_3$	354.45	8.40	$[M+H]^+$	355.20162	355.20097	1.8	337.19101; 144.08089; 294.14886
18	别隐品碱	Allocryptopine	$\mathrm{C}_{21}\mathrm{H}_{23}\mathrm{NO}_5$	369.41	8.55	$[M+H]^+$	370.16490	370.16462	0.8	188.07071; 290.09372; 206.08128
19	次乌头碱	Hypaconitine	C ₃₃ H ₄₅ NO ₁₀	615.72	11.03	$[M+H]^+$	616.31162	616.31108	0.9	105.03375; 338.17490; 556.29041
20	乌头碱	Aconitine	C ₃₄ H ₄₇ NO ₁₁	645.74	11.16	$[M+H]^+$	646.32219	646.32146	1.1	105.03396; 586.30121; 368.1857

在离子源内裂解失去-C₂H₃O₂,形成了稳定的双键得 到 m/z=297.18439(见图 1);闹羊花毒素 III m/z= 329.19587 在离子源内裂解失去 4 个 H₂O 后形成了 稳定的双键,得到 m/z=297.18439(见图 2)。闹羊花 毒素 V[M+H]⁺电离模式下没有加氢峰,而在 [M+Na]⁺ 电离模式下有极强的加钠峰;马桑亭在 [M-H]⁻电离 模式下能得到很好的减氢峰,其它 17 种植物源性毒 性成分在 [M+H]⁺电离模式下均能得到很好的加氢峰。

2.3 固相萃取小柱的选择

由于 20 种植物源性毒性成分多数生物碱等碱 性物质,故本实验选择了混合型阳离子交换固相萃取 小柱(MCX)、混合型弱阳离子交换固相萃取小柱 (PCX)、Waters Oasis HLB 三种类型对生物碱有效 好保留的固相萃取小柱进行前处理考察。结果发现 混合型阳离子交换固相萃取小柱(MCX)对 20 种植

Fig.2 Chinese azalea flowers toxins IIII cracking figure

物源性毒性成分具有高的选择性和灵敏度,均获得了很好的净化效果;而Waters Oasis HLB对千里光菲

灵碱的保留较差,回收率只有 62.81%;从图 3 中能看 出 PCX 对钩吻碱、千里光菲灵碱、钩吻素子、千里 光宁(千里光碱)、春千里光碱、钩吻碱己、原阿片 碱、胡蔓藤碱乙、别隐品碱、次乌头碱、乌头碱保留 较差,回收率都无法满足实验要求;故首选了 Waters Oasis MCX 混合型阳离子交换固相萃取小柱进行样 品提取净化。

图 3 20 种植物源性毒性成分过不同萃取小柱的回收率 Fig.3 Recovery rate of 20 plant-derived toxic ingredients through different extraction column

2.4 净化方法的优化

2.4.1 淋洗溶剂的优化 蜂蜜属于高复杂度过饱和 混合物,而糖类作为其主要化学成分,占蜂蜜干物质 的 95% 左右,其中葡萄糖和果糖含量最高,蔗糖其 次[36]。在淋洗溶剂的选择上,对甲醇和水进行考 察,结果发现使用甲醇进行淋洗会导致马桑亭、闹羊 花毒素 V、闹羊花毒素 III、闹羊花毒素 III 等成分跟 随淋洗液共流出,使得回收率降低。而水对糖类物质 溶解性较好,且用水淋洗时目标成分随淋洗液共流出 较少,故洗择水作为淋洗液。进而对淋洗溶剂的量进 行了考察,分别考察了使用 5、10、15 mL 水进行淋 洗,结果发现 15 mL 水洗脱会导致雷公藤乙素回收 降低 10% 左右, 10 mL 水能够将糖类物质洗脱完全, 且目标成分获得较好的回收,回收率结果均大于70% 2.4.2 洗脱溶剂的优化 因目标成分均为生物碱类 物质,在碱性条件下较易洗脱,故选择 5% 氨化甲醇 作为洗脱溶剂。分别考察了 5、9、15 mL 5% 氨化甲 醇3种洗脱剂对目标分析物的影响,综合考虑目标 分析物的洗脱效果和节省溶剂等因素,最后选择9mL 5% 氨化甲醇作为洗脱溶剂,能够达到最佳洗脱效果。

2.5 基质效应的影响

基质效应普遍存在于质谱检测中,表现为离子 增强效应或离子抑制效应,从而导致定量结果有一定 的偏差。通常基质效应消除方法有固相萃取净化、 同位素内标法、稀释法等^[37],而通过对比基质匹配标 液与相同浓度的纯溶剂标液的仪器响应值来考察基 质效应,计算公式为基质效应=基质匹配标液响应 值/纯溶剂标液响应值,若两者比值在 85%~115%,则 基质效应可忽略^[38]。本实验采用固相萃取净化的方 法来消除基质效应的影响,如图 4 所示,经过 MCX 净化之后,两者比值在 85%~115% 之间,其基质效应 得到有效消除。因此,本文采用甲醇配制标准曲线, 外标法定量。

2.6 数据库的筛查

通过 TraceFinder 软件建立的数据库与样品的 保留时间、主要二级碎片、同位素分布和二级质谱图 相识度比对等多种方法,综合判断,以得到准确定性 结果,避免假阳性检测结果的出现。实现多组分无对 照同时筛查的定性分析。具体分析物质的准确质量 数及碎片离子、保留时间、电离模式如表 1 所示; 20 种植物源性毒性成分的提取离子流色谱图见 图 5。

2.7 线性关系考察

分别精密吸取"1.2.1"项下溶液 0.01、0.02、0.05、 0.10、0.20 mL 至 10 mL 容量瓶中,使用甲醇溶液稀 释成浓度约为 10.0、20.0、50.0、100.0、200.0 μg /L 的标准工作溶液。按 1.2.3 方法测定。用外标法定 量,以峰面积为纵坐标(y)、质量浓度为横坐标(x, μg/L)进行线性回归,求得回归方程。再分别吸取 "1.2.1"溶液,逐步稀释,按照"1.2.3"色谱条件测定; 取信噪比为 3:1 的质量浓度为检出限,详见表 2,结 果表明 20 种待测化合物在各自范围内呈良好的线 性关系,r 均大于 0.995。

2.8 精密度试验

精密吸取"1.2.1"项下对照品溶液,连续进样 6次,记录峰面积,结果测得20种化合物峰面积的 RSD范围在0.5%~2.3%之间,表明仪器精密度良好。

2.9 重复性试验

分别称取 1.00 g 样品六份, 置于 15 mL 聚丙烯 具塞离心管中, 分别添加 0.02 mL 的混合标准中间 溶液(加入量约 200 ng), 按"1.2.2"项下制备并依法 测定。结果测得野百合碱、钩吻碱、东茛菪碱氢溴酸 盐、倒千里光碱、钩吻素子、千里光宁、钩吻碱己、马

Z	Ę	2	20	种植	植物	源	生毒	性质	戓分	的约	鱾性	及材	泪关	E系	数	和	检Ŀ	出	狠
r		_			- 1/-			1	~~~~		~	~ ~ 1	D Z	· · ·	~~~			_	

Table 2 Linearities and correlation coefficients and detection limits of 20 plant-derived toxic ingredients

成分	回归方程	线性范围(µg/L)	相关系数r	检出限(µg/kg)
野百合碱	y=1.74024e+006x+3.87433e+006	11.05~221.04	0.9993	1.1
N-氧化芝麻菜叶千里光	y=6.26145e+006x+2.76492e+006	10.20~204.00	0.9990	1.0
钩吻碱	y=6.26145e+006x+2.76492e+006	10.32~206.40	0.998	0.5
东莨菪碱	y=1.73966e+006x-1.19978e+006	9.07~181.42	0.997	0.5
倒千里光碱	y=1.18342e+006x-6.64955e+006	9.18~183.68	0.996	0.5
千里光菲灵碱	y=1.04594e+006x+1.19731e+007	9.32~186.32	0.997	1.9
钩吻素子	y=2.3337e+006x-1.01106e+007	10.08~201.70	0.995	0.5
千里光宁	y=6.31671e+006x-7.06935e+006	12.04~240.76	0.996	0.6
春千里光碱	y=6.31229e+006x-7.62245e+006	10.65~213.00	0.995	0.5
春千里光碱 N-氧化物	y=2.35604e+006x+5.50655e+006	9.07~181.36	0.995	0.5
钩吻碱已	y=5.63862e+006x+4.18264e+006	10.85~216.97	0.998	0.5
马桑亭	y=31547.1x+298769	9.88~197.52	0.995	4.9
闹羊花毒素V	y=73731.2x-351697	13.87~277.48	0.995	6.9
原阿片碱	y=6.25039e+006x+2.3877e+007	10.71~214.26	0.998	0.5
胡蔓藤碱乙	y=5.20333e+006x+5.00048e+006	8.45~168.96	0.996	0.4
别隐品碱	y=7.00083e+006x+2.07491e+006	10.51~210.18	0.998	0.5
闹羊花毒素II	y=747810x-2.43661e+006	11.88~237.70	0.996	0.6
闹羊花毒素III	y=12885.6x-20331.3	9.04~180.84	0.997	4.5
次乌头碱	y=1.83927e+006x+3.36015e+006	10.07~201.45	0.998	0.5
乌头碱	y=1.47927e+006x+5.31952e+006	11.38~227.58	0.997	0.6

图 5 20 种植物源性毒性成分的提取离子流色谱图

Fig.5 Extracted ion flow chromatograms of 20 plant-derived toxic ingredients

注: A: 正离子模式下; B: 负离子模式下; 1: 野百合碱; 2: N-氧 化芝麻菜叶千里光; 3: 东茛菪碱; 4: 钩吻碱; 5: 倒千里光碱; 6: N-去氧千里光菲灵碱; 7: 闹羊花毒素 III; 8: 钩吻素子; 9: 马桑 亭; 10: 千里光宁(千里光碱); 11: 春千里光碱; 12: 春千里光碱 N-氧化物; 13: 钩吻碱己; 14: 闹羊花毒素 V; 15: 原阿片碱; 16: 闹羊花毒素 II; 17: 胡蔓藤碱乙; 18: 别隐品碱; 19: 次乌头碱; 20: 乌头碱。 桑亭、闹羊花毒素 II、闹羊花毒素 III、闹羊花毒素 V、原阿片碱、A-别隐品碱、次乌头碱、乌头碱、春千 里光碱、春千里光碱 N 氧化物、N-氧化芝麻菜叶千 里光、胡蔓藤碱乙、千里光菲灵碱的 RSD 分别为 0.8%、1.3%、1.6%、1.1%、0.8%、1.9%、2.1%、 1.4%、0.8%、0.6%、1.3%、0.7%、0.5%、2.4%、 1.8%、1.6%、1.1%、0.5%、1.8%、2.0%,表明方法重 复性良好。

2.10 稳定性试验

取"1.2.2"项下同一样品溶液,分别在制备后 0、 2、4、8、12 和 24 h 按"1.2.3"色谱条件进样,记录相 应的色谱峰面积,结果样品中 20 种峰面积的 RSD 范围在 0.8%~2.1% 之间,表明供试品溶液在 24 h 内稳定性良好。

2.11 加标回收率试验

分别称取 1.00 g 样品 18 份, 置于 15 mL 聚丙 烯具塞离心管中, 分别添加 0.01、0.02、0.1 mL 的混 合标准中间溶液各 6 份, 按"1.2.2"操作, 进行低、 中、高 3 个浓度水平的加标回收试验, 按 1.2.3 操作进样分析, 计算加样回收率(结果见表 3); 结果 如表所示各植物源性毒性成分回收率介于 74.1%~114.6%之间, 表明本检测方法的准确度高, 可满足实验室的日常分析需求。

2.12 实际样品分析

按"1.2"方法将 66 批蜂蜜样品进行测定,结果 发现在 8 批蜂蜜样品中检出东莨菪碱,含量在 20~1400 μg/kg之间;其中 2 批蜂蜜中另检出倒千里

表 3 20 种植物源性毒性成分的平均回收率和 相对标准偏差(n=6)

Table 3 Aaverage recoveries and relative standard deviations of 20 kinds of plant-derived toxic ingredients (n = 6)

化合物	添加水平(µg/kg)	平均回收率(%)	RSD(%)
	110.5	87.08	0.8
野百合碱	221	86.21	7.1
	1105	90.33	4.7
	102	85.17	2.9
N-氧化乏麻采叶十里光	204	89.55	1.6
	1020	94.33	1.9
たし nha たき	90.7	100.48	0.91
钩吻鰔	181.4	100.42	0.92
	907	90.79	1./
大哲苎诸	91.8 183.6	104.01	2.2
不良石嶼	918	94.66	0.5
	93.2	106.75	1.5
倒千甲光碱	186.4	103.02	1.5
四十主九贼	932	102.18	2.1
	100.8	75 35	44
千里光菲灵碱	201.6	84.54	0.8
1 1.76 11 200%	1008	86.29	2.1
	100.8	107.24	0.3
钩吻素子	201.6	101.81	0.6
	1008	100.14	0.2
	120.4	107.86	0.6
千里光宁(千里光碱)	240.8	100.88	0.4
	1204	98.45	1.6
	106.5	108.39	0.5
春千里光碱	213	103.18	0.4
	1065	100.88	0.4
	90.7	84.87	0.5
春千里光碱 N-氧化物	181.4	89.01	4.4
	907	94.86	0.6
	108.5	99.83	1.9
钩吻碱己	217	97.67	1.3
	1085	95.69	1.1
	98.8	75.78	3.9
马桑亭	197.6	80.23	0.3
	988	75.75	1.2
	138.7	114.56	1.7
闹羊花毒素V	277.4	106.37	2.7
	1387	110.48	1.4
	107.1	87.36	1.9
原阿片碱	214.2	92.61	1.2
	1071	95.36	2.6
	84.5	93.76	3.7
胡蔓藤碱乙	169	93.03	3.6
	845	94.52	1.8
	105.1	95.58	3.7
别隐品碱	210.2	92.71	1.7
	1051	92.87	0.3
四半开车车u	118.8	107.35	0.6
同丰化母系	237.0	103.29	0.4
	1188	99.4	1.0
届 羊 北 書 麦 Ⅲ	90.4 180.8	83.19 107.46	4.9 2.2
四十化母系111	00.0	07 5/	2.2 1 1
	100.7	00.2	
次白斗碱	201.4	90.3 87 1	1.1
	1007	85 11	03
	113.8	74.06	2.2
乌头碱	227.6	75.41	0.4
	1138	80.81	0.6

光碱,含量在 48~150 μg/kg 之间;2 批蜂蜜中检出 N-氧化千里光菲灵碱含量在 49~80 μg/kg 之间,详情见 表 4,结果表明,在蜂蜜中检出有毒化合物占 12%,在 蜂蜜中存在一定的食品安全风险。

表 4 样品测定结果(µg/kg) Table 4 Results of random test (µg/kg)

样品	东莨菪碱含量 (µg/kg)	倒千里光碱含量 (μg/kg)	N-氧化千里光菲灵碱 含量(µg/kg)
金秀大瑶山冬蜜	148.50	48.11	/
金秀大瑶山新蜜	119.35	/	/
南宁新蜜	291.28	/	/
来宾壮乡人枇杷 蜜	111.94	/	/
崇左百花蜜	1407.54	146.46	74.31
钦州百花蜜1	30.75	/	/
钦州百花蜜2	87.00	/	49.81
大新百花蜜	23.36	/	/

注:/表示未检出。

3 结论

本研究建立了以纯水提取,混合型阳离子交换 固相萃取小柱(MCX)净化,结合超高效液相色谱-四 极杆/静电场轨道阱高分辨质谱法对蜂蜜中的 20 种 植物源性毒性成分进行测定,其中检出了东茛菪碱、 倒千里光碱和 N-氧化千里光菲灵碱,提示食用蜂蜜 还是存在一定的食品安全风险。方法的准确度和精 密度结果都符合要求,证明该方法在对蜂蜜进行 20 种植物源性毒性成分的定性定量分析时提供可 靠、重复、并且准确的结果;满足日常检测和风险筛 香要求。

参考文献

[1] 欧阳军.不同蜜源蜂蜜的医疗保健功效[J].中国蜂业, 2018,69(12):50-52. [Ou Yang J. Health care efficacy of honey from different nectar sources[J]. Apiculture of China, 2018, 69(12):50-52.]

[2] 王金宝. 蜂蜜入药好治病[J]. 蜜蜂杂志, 2019, 39(1): 39-41.
[Wang J B. Honey is a good medicine for treating disease[J].
Journal of Bee, 2019, 39(1): 39-41.

[3] 国家卫生计生委办公厅关于 2015 年全国食物中毒事件情况的通报 [J]. 中国食品卫生杂志, 2016, 28(3): 290, 391, 408. [National Health and Family Planning Commission of the People's Republic of China. Analysis of the Food Poisoning in China, 2015[J]. Chinese Journal of Food Hygiene, 2016, 28(3): 290, 391, 408.]

[4] Aryal B D, Niraula S, Malla G B, et al. Cardiovascular collapse due to wild honey Intoxication: A case report[J]. Health Renaissance, 2017, 13(2): 170–172.

[5] 刘志涛,赵江,张强,等. 2012-2017年云南省有毒动植物中 毒事件分析[J].中国食品卫生杂志,2018,30(5):477-480. [Liu Z T, Zhao J, Zhang Q, et al. The epidemiology of poisonous animal and plant poisoning in Yunnan province from 2012 to 2017[J]. Chinese Journal of Food Hygiene, 2018, 30(5): 477-480.]

[6] Zhang Q, Chen X G, Chen S A, et al. Fatal honey poisoning

[7] 周莉,袁玉伟,王伟,等. 福建省有毒蜜源植物雷公藤初步调查[J]. 中国蜂业,2017,68(2):41-43. [Zhou L, Yuan Y W, Wang W, et al. Preliminary investigation of toxic nectar plants-Tripterygium wilfordii in Fujian[J]. Apiculture of China, 2017, 68(2):41-43.]

[8] 郑亚杰, 刘秀斌, 林莉, 等. 蜂蜜中植物源性毒性成分的研究 进展[J]. 食品科学, 2019, 40(3): 307-316. [Zheng Y J, Liu X B, Lin L, et al. Plant-derived toxins in honey: A review[J]. Food Science, 2019, 40(3): 307-316.]

[9] 郑亚杰, 刘秀斌, 彭晓英, 等. 我国有毒蜜源植物及毒性[J]. 蜜蜂杂志, 2019, 39(2): 1-8. [Zheng Y J, Liu X B, Peng X Y, et al. Toxic nectar plants and toxicity[J]. Journal of Bee, 2019, 39(2): 1-8.]

[10] Hungerford N L, Carter S J, Anuj S R, et al. Analysis of pyrrolizidine alkaloids in queensland honey: Using low temperature chromatography to resolve stereoisomers and identify botanical sources by UHPLC-MS/MS[J]. Toxins, 2019, 726(11); 1–23.

[11] Gao X, Hu J, Zhang X, et al. Research progress of aconitine toxicity and forensic analysis of aconitine poisoning[J]. Forensic Sciences Research, 2020, 5(1): 1–7.

[12] 陈伟, 张锐, 雷思敏, 等. 博落回化学成分及其药理活性研究进展[J]. 中国实验方剂学杂志, 2020, 26(3): 251-258. [Chen W, Zhang R, Lei S M, et al. Advances in chemical constituents and bioactivities of macleaya cordata[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(3): 251-258.]

[13] Mulder P P J, Lopez P, Castellari M B D, et al. Occurrence of pyrrolizidine alkaloids in animal- and plant-derived food: Results of a survey across Europe[J]. Food Additives and Contaminants, Part A. Chemistry, Analysis, Control, Exposure And Risk Assessment, 2018, 35(6): 1231–1231.

[14] Sun M X, Cui Y, Li Y, et al. Indole alkaloids from Gelsemium elegans[J]. Phytochemistry, 2019, 162: 232–240.

[15] 张秀尧, 蔡欣欣, 张晓艺, 等. 超高效液相色谱-三重四极杆 质谱法测定血浆和尿液中马桑亭和马桑宁[J]. 色谱, 2019, 37(2): 37-42. [Zhang X Y, Cai X X, Zhang X Y, et al. Determination of coriatin and corianin in plasma and urine using ultra-performance liquid chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography, 2019, 37(2): 37-42.]

[16] Pasupuleti S R, Gangapatnam S, Matcha B. U-HPLC (ultrahigh-pressure liquid chromatography) separation of indole alkaloid strychnine[J]. World Journal of Pharmaceutical Research, 6(13): 1022–1032.

[17] 谌赛男, 王河山, 曾靖舒, 等. HPLC 法同时测定钩吻茎中胡 蔓藤碱丙等 6 个生物碱的含量 [J]. 药物分析杂志, 2017, 37(4): 595-601. [Chen S N, Wang H S, Zeng J S, et al. Simultaneous determination of 6 major alkaloids including humantenidine in the stem of gelsemium elegans benth, by HPLC[J]. Chinese Journal of Pharmaceutical Analysis, 2017, 37(4): 595-601.] [18] 陈鸿义, 陈小华. 胡蔓藤生物碱类的毛细管柱气相色谱分析 [J]. 色 谱, 1990(6): 383-385. [Chen H Y, Chen X H. Determination of the alkaloids of gelsemium elegans banth by capillary gas chromatography[J]. Chinese Journal of Chromatography, 1990(6): 383-385.]

[19] Wang Z, Zheng P, Wang J, et al. Indirect competitive enzyme-linked immunosorbent assay based on a broad-spectrum monoclonal antibody for tropane alkaloid detection in pig urine, pork and cereal flours[J]. Food Chemistry, 2020, 337; 127617.

[20] 袁帅, 许玉, 黄磊, 等. 乌头属药材中单酯型乌头碱的 ELISA 法测定[J]. 中国医药工业杂志, 2016, 47(7): 897-901. [Yuan S, Xu Y, Huang L, et al. Determination of mono-ester alkaloids in aconitum plants by ELISA[J]. Chinese Journal of

Pharmaceuticals, 2016, 47(7): 897–901.]

[21] 陈燕乐,杨广民,唐昭山,等.博落回中四种生物碱的薄层 鉴别研究[J].中国兽药杂志,2020,54(4):30-35. [Chen Y L, Yang G M, Tang Z S, et al. Study on TLC identification of 4 alkaloids in macleaya cordata and m. microcarpa[J]. Chinese Journal of Veterinary Drug, 2020, 54(4): 30-35.]

[22] Szabó B, Lakatos A, Koszegi T, et al. Thin-layer chromatography-densitometry and liquid chromatography analysis of alkaloids in leaves of papaver somniferum under stress conditions[J]. Journal of AOAC International, 2005, 88(5): 1571–1577.

[23] 罗达龙. 固相萃取-气质联用结合同位素峰形校正检索技 术分析钩吻中的钩吻碱和钩吻碱子[J]. 药物分析杂志, 2016, 36(1):96-101. [Luo D L. Analysis of gelsemine and koumine in gelsemium elegans by SPE-GC/MS-CLIPS[J]. Chinese Journal of Pharmaceutical Analysis, 2016, 36(1):96-101.]

[24] Kowalczyk E, Kwiatek K. Determination of pyrrolizidine alkaloids in selected feed materials with gas chromatography-mass spectrometry[J]. Food Additives and Contaminants Part A Chemistry Analysis Control Exposure and Risk Assessment, 2017, 34(5): 853–863.

[25] 麦沛明, 余胜兵, 吴西梅, 等. 分散液-液微萃取-气相色谱-质谱法同时测定中毒样品中有毒生物碱和鼠药[J]. 分析化学, 2015(2): 282-287. [Mai P M, Yu S B, Wu X M, et al. Simultaneous determination of toxic alkaloids and rat poisons in toxic samples by dispersive liquid-liquid micro-extraction combined with gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015(2): 282-287.]

[26] Konishi T, Akaki K, Hatano K. Determination of hyoscyamine and scopolamine in serum and urine of humans by liquid chromatography with tandem mass spectrometry[J]. Shokuhinseigaku Zasshi, 2008, 49(4): 266–271.

[27] Zheng W, Yoo K H, Choi J M, et al. A modified QuEChERS method coupled with liquid chromatography-tandem mass spectrometry for the simultaneous detection and quantification of scopolamine, L-hyoscyamine, and sparteine residues in animal-derived food products[J]. Journal of Advanced Research, 2019, 27(15): 95–102.

[28] Du N N, Zhou W J, Jin H L, et al. Characterization of tropane and cinnamamide alkaloids from Scopolia tangutica by highperformance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry[J]. Journal of Separation Science, 2019, 42(6): 1163–1173.

[29] 刘彦钊, 张丽丽, 江飞. UPLC-ESI-MS/MS 法测定蜂蜜中兽 药残留[J]. 现代食品, 2020(16): 173-175. [Liu Y Z, Zhang L L, Jiang F. Determination of veterinary drug residues in honey by UPLC-ESI-MS/MS[J]. Modern Food, 2020(16): 173-175.]

[30] Gawel M, Kiljanek T, Niewiadowska A, et al. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry[J]. Food Chemistry, 2019, 282(1): 36–47.

[31] Bartha S, Taut I, Goji G, et al. Heavy metal content in polyfloralhoney and potential health risk: A case study of copşa mică, romania[J]. International Journal of Environmental Research, 2020, 17(5): 1507.

[32] Xu J Z, Liu X H, Wu B, et al. A comprehensive analysis of ¹³C isotope ratios data of authentic honey types produced in China using the EA-IRMS and LC-IRMS[J]. Journal of Food Science and Technology -Mysore, 2019, 57(4): 1216–1232.

[33] 谢博,傅红,杨方. UPLC-Q-Exactive 四极杆-静电场轨道阱 高分辨质谱联用鉴别掺假蜂蜜[J]. 食品工业科技,2020,41(2): 244-251. [Xie B, Fu H, Yang F. Identification of adulterated honey by UPLC-Q-exactive quadrupole-electrostatic field track trap high resolution mass spectrometry[J]. Science and Technology of Food Industry, 2020, 41(2): 244-251.]

[34] 雷美康, 彭芳, 祝子铜, 等. 超高效液相色谱-串联质谱法同

时测定蜂蜜中雷公藤红素和雷公藤次碱[J]. 食品科学, 2015, 36(12): 218-220. [Lei M K, Peng F, Zhu Z T, et al. Determination of triptolide and wilforine in honey by ultra performance liquid chromatography-tandem mass spectrometry[J]. Food Science, 2015, 36(12): 218-220.]

[35] 雷美康, 彭芳, 丁涛, 等. 固相萃取净化-超高效液相色谱-串 联质谱法测定蜂蜜中雷公藤次碱[J]. 色谱, 2015, 33(1):65-67. [Lei M K, Peng F, Ding T, et al. Determination of wilforine in honey using solid phase extraction purification and ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2015, 33(1):65-67.]

[36] 陈赛果. 蜂蜜化学成分及其主要生物学功能研究进展分析 [J]. 现代食品, 2018(13): 53-54, 57. [Chen S G. Research progress on chemical constituents and main biological functions of honey[J]. Modern Food, 2018(13): 53-54, 57.]

[37] 孙文闪,周婷婷,诸骏杰,等.固相萃取净化超高液相色谱-串联质谱测定鱼粉中的组胺[J].粮食与饲料工业,2020(3): 65-69. [Sun W S, Zhou T T, Zhu J J, et al. Determination of histamine in fish meal by SPE UPLC-MS/MS[J]. Cereal & Feed Industry, 2020(3): 65-69.]

[38] 蒋湘, 韦环, 黄燕红, 等. 超高效液相色谱-串联质谱法测定 麦冬、山药和菊花中 14 种植物生长调节剂 [J]. 中国药师, 2020, 23(2): 264-269. [Jiang X, Wei H, Huang Y H, et al. Determination of 14 plant growth regulators in Ophiopogon Japonicas, Chinese Yam and Chrysanthemum by UPLC-MS/MS [J]. China Pharmacist, 2020, 23(2): 264-269.]